

COMSOL Confernce 05/11/2008

Mathematical Modelling and Simulation of Magnetostrictive Materials by Comsol Multiphysics

M. Bailoni¹, Y.Wei², L. Norum³

¹University of Trieste, guest at Norwegian University of Science and Technology (NTNU) ^{2, 3} NTNU Department of Electric Power Engineering, Trondheim, NORWAY ¹ bailoni@elkraft.ntnu.no, ² yingkang.wei@sintef.no, ³ norum@ntnu.no,

www.ntnu.no

- Motivation
- History and Physical behavior
- Functions and applications
 - o **Sensors**
 - o Actuators
 - **Energy conversion**
- Mathematical modelling
- Modelling in Comsol Multiphysics
- Problems
- Conclusion

Motivation

- make tool to achieve for a quantitativies analysis
- the relation magneto-mechanical

Particuliarities of the material:

- high density of available energy
- long life time
- prospective for new type of energy conversion

• Motivation

• History and Physical behavior

- Functions and applications
 - o Sensors
 - o Actuators
 - **Energy conversion**
- Mathematical modelling
- Modelling in Comsol Multiphysics
- Problems
- Conclusion

History and Physical behavior

History:

- Discovered on 1842 James Joule
- Giant magnetostrictive 1960 USA Navy

Physical behaviour:

- Apply magnetic field H

History and Physical behavior

- Internal domains alignment
- Changing in shape changing in magnetic field

History and Physical behavior

- Reversible cycle and magneto-mechanical coupling diagram

- Motivation
- History and Physical behavior
- Functions and applications
 - o **Sensors**
 - o Actuators
 - **Energy conversion**
- Mathematical modelling
- Modelling in Comsol Multiphysics
- Problems
- Conclusion

Functions and applications

Sensors and actuators:

Possibility to recover energy from waste

- Motivation
- History and Physical behavior
- Functions and applications
 - o Sensors
 - o Actuators

Energy conversion

• Mathematical modelling

- Modelling in Comsol Multiphysics
- Problems
- Conclusion

Mathematical modelling

By making some mathematical steps the model will be:

$$\int \nabla^{2} H = \sigma d \frac{\partial T}{\partial t} + \frac{d}{\mu} \left(\mu\varepsilon - \rho\eta\right) \frac{\partial^{2} T}{\partial t^{2}} + \mu\sigma \frac{\partial H}{\partial t} + \frac{\left(\mu^{2}\varepsilon - \rho d^{2}\right)}{\mu} \frac{\partial^{2} H}{\partial t^{2}}$$
$$\frac{\partial^{2} T}{\partial x^{2}} = \rho\eta \frac{\partial^{2} T}{\partial t^{2}} + \rho d \frac{\partial^{2} H}{\partial t^{2}}$$
$$\tilde{k}_{1} = \frac{\left(d\left(\rho\eta - \mu\varepsilon\right) + \frac{i\mu\sigma d}{\omega}\right)}{\tilde{k}_{1}}$$

Considering harmonic analysis:

$$\int \nabla^2 H = \omega^2 \tilde{k}_1 T + \omega^2 \tilde{k}_2 H$$
$$\frac{\partial^2 T}{\partial x^2} = \omega^2 \tilde{G}_1 T + \omega^2 \tilde{G}_2 H$$

$$\tilde{\xi}_{1} = \frac{\left(d\left(\rho\eta - \mu\varepsilon\right) + \frac{i\mu\sigma d}{\omega}\right)}{\mu}$$

$$\tilde{k}_{2} = \frac{\left(\left(\rho d^{2} - \mu^{2}\varepsilon\right) + \frac{i\mu^{2}\sigma}{\omega}\right)}{\mu}$$

$$\tilde{G}_1 = -\rho\sigma$$
$$\tilde{G}_2 = -\rho d$$

Mathematical modelling

Iterative evaluation for the parameters

with new H, T is changed

with new T, μ is changed

with new μ , H is changed

- Motivation
- History and Physical behavior
- Functions and applications
 - o Sensors
 - o Actuators
 - **Energy conversion**
- Mathematical modelling
- Modelling in Comsol Multiphysics
- Problems
- Conclusion

Modelling in Comsol Multiphysics

•Model related to the mathematical one for the simulation

Modelling in Comsol Multiphysics

Slice: Magnetic field, norm [A/m] Subdom ain: conductor Streamline: Magnetic flux densit

Induction flux lines

Modelling in Comsol Multiphysics

Auxiliary 2D geometry and meshing

- Motivation
- History and Physical behavior
- Functions and applications
 - o Sensors
 - o Actuators
 - **Energy conversion**
- Mathematical modelling
- Modelling in Comsol Multiphysics
- Results and problems
- Conclusion

Results and problems

Full harmonic excitation simulation

Results and problems

	Stopped
ess Convergence P	ot Log
	<pre>'solcomp',{'tAxAyAz20','tAxAyAz21','tAxAyAz10'}, 'outcomp',{'T','tAxAyAz20','tAxAyAz21','tAxAyAz10','H'}, 'linsolver','gmres');</pre>
lumber of degree Symmetric matric	s of freedom solved for: 74206 es found. ed since Incomplete LU uses unsymmetric storage.
Incomplete LU ter Damping 1 1.0000000	factors: 5631306 nonzeros. (Original matrix has 2569684 non Stepsize #Res #Jac #Sol LinIt LinErr LinRes 1.7e-006 1 1 1 10000 3.8e-005 5.5
rror:	
Failed to find	a solution:
Returned solut	ion has not converged.
least and I	
ear Log	
vce automatically	Close
se automatically	

3D model problem

- Motivation
- History and Physical behavior
- Functions and applications
 - o Sensors
 - o Actuators
 - **Energy conversion**
- Mathematical modelling
- Modelling in Comsol Multiphysics
- Results and problems
- Conclusion

Conclusion

- Comsol[©] can solve this problem
- Stress depend of H and time
- Tractive and compressive efforts located top and bottom

Future work:

-transient analysis

-complete and detailed simulation

Thank you!

Mathematical modelling

Mathematical modelling

- Making time-derivative and the second derivative on the equations (2.1) and (2.2):

$$\frac{\partial}{\partial x} \left(\frac{\partial^2 u}{\partial t^2} \right) = \eta \frac{\partial^2 T}{\partial t^2} + d \frac{\partial^2 H}{\partial t^2}$$
(2.4)

- Consider the second Newton's law:

$$F = ma$$
 (2.5)
Then obtaining:

$$\frac{\partial T}{\partial x} = \frac{\partial \left(\frac{F}{A}\right)}{\partial x} = \frac{\partial F}{\partial V} = \frac{\partial (m \cdot a)}{\partial V} = \rho \cdot a = \rho \frac{\partial^2 u}{\partial t^2} \quad (2.6)$$