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Abstract: his paper aims at show-
ing, through the description of two spe-
cific examples, how we can introduce smart
material coupling effects by using Com-
sol Multiphysics R© software and how elec-
tromechanical modeling reduction can be
addressed for connecting the designed trans-
ducers as a substructure in a more complex
system. The first example deals with dy-
namics modeling of non linear Shape Mem-
ory Alloy structure for structural shape con-
trol or semi-active damping optimization.
The second example is dedicated to the elec-
tromechanical modeling of piezocomposite
materials with their electronics shunts for
their used to optimize vibroacoustical energy
diffusion in complex mechanical systems.

Keywords: Smart Materials and Struc-
tures, Metamaterials Piezoelectric, Shape
Memory Alloy

1 Introduction

The research activities in the fields of smart
materials and structures today are very im-
portant and represent a large potential for
the technological innovation in mechanics
and electronics. The next generation of
smart system will be constituted of ac-
tive transducers and their driving electron-
ics directly integrated in otherwise passive
structures. A large research effort is now
devoted for modeling smart materials and
their multi-physical coupling effects in order
to provide efficient numerical tools for ro-
bust optimization of this integrated adaptive
composite structures constituted of a dense
set of electro active cells. In this context
Comsol Multiphysics R© software appears as
a very powerful and versatile numerical tool
for finite element modeling of such smart be-

havior coupling many different physics such
as thermal, mechanical or electro-magnetic
phenomena. This paper aims at showing,
through the description of two specific ex-
amples, how we can introduce such coupling
effects by using Comsol Multiphysics R© soft-
ware and how electromechanical modeling
reduction can be addressed for connecting
the designed transducers as a substructure
in a more complex system. The first example
deals with dynamics modeling of non linear
Shape Memory Alloy structure for structural
shape control or semi-active damping opti-
mization. The second example is dedicated
to the electromechanical modeling of piezo-
composite materials with their electronics
shunts for their used to optimize vibroacous-
tical energy diffusion in complex mechanical
systems.

1.1 Transient Dynamical
response computation of
Shape Memory Alloy
materials and structures

2 Introduction

Shape Memory Alloy (SMA) are widely
studied as an interesting smart material to
actuate mechanical structures but also for
its capability for inducing damping effect.
Its use to optimize vibroacoustics responses
involves a precise modeling of its dynam-
ical behavior. The phase transformation
between mother phase, the Austenite, and
the induced one, the Martensite, leads to
a strong non linear pseudo-elastic material
behavior. The dissipated energy per hys-
teretic cycle can also be optimized to im-
prove damping and/or isolation performance
of the studied mechanical system [8, 6, 11].
The modeling approach involves the mul-
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tiphysical description of the whole thermo-
mechanical coupling especially when the dy-
namics response cannot be considered nor
adiabatic nor isothermal. The part describes
the developed numerical methodology to im-
plement this behavior into Comsol R© soft-
ware for impact response computation.

3 Mathematical Formulation

Let us consider an open domain Ω bounded
by a closed surface Γ = Γu ∪ Γt such as de-
scribed in figure 1. ~n represents the outgoing
normal vector to this surface.

Figure 1: The considered mechanical problem
and boundary conditions

The applied mechanical loads are : ~Uo the
applied Dirichlet boundary conditions onto
Γu; ~F the applied Neumann boundary con-
ditions onto Γ and ~f(x, t) the load inside the
domain Ω. In parallel the convection ther-
mal boundary condition is introduced such
as ∂T

∂n = ho

λ (T − To) on Γ, where To is the
external temperature, λ the thermal con-
ductivity and ho the convection parameter.
According to the Raniecki-Lexcellent model,
widely described in [2, 8, 6, 11], on can show
that the whole thermo mechanical equilib-
rium, without any internal thermal source
term, can be written as in 1.

ρÜ(x, t)−∇σ(x, t) = f(x, t) ∀x ∈ Ω
ρCvṪ (x, t) +∇q =
θf (ε̄, ξ, T )ξ̇(x, t)− αT (x, t)σ : I ∀x ∈ Ω
ξ̇πf ≥ 0 ∀x ∈ Ω
σ.n = F (x, t) ∀x ∈ Γt
U = Uo(x, t) ∀x ∈ Γu
q.n = −ho(T (x, t)− To) ∀x ∈ Γ

(1)
where :

• σ(x, t) and ε(x, t) = 1
2 (U.∇T + ∇UT )

stand for the Green-Lagrange con-
straints tensor and the associated
Cauchy strain tensor, ε̄ being the
equivalent Von Mises strain (i.e ε̄ =√

2
3dev(ε) : dev(ε);

• q is the thermal flow vector;

• ξ is the induced Martensite fraction
and πf the associated thermodynam-
ical force such as : πf = 3µγρ ε̄ − (1 −
2ξ)φit(T )− 3µρ γ

2ξ + πfo (T ) where µ is
one of the material Lame coefficient,
γ the maximum induced strain, φit(T )
an affine function of temperature (see
[2, 8, 6, 11] for definition);

• and θf = πf +T∆so−(1−2ξ)s̄o where
so and s̄o are entropy characteristic pa-
rameter inherent to the RL model (see
[2, 8, 6, 11] for details);

• and Cv, α and ρ respectively the mate-
rial thermal capacity, the thermal ex-
pansion coefficient and the mass den-
sity.

The third inequality in 1 is direclty linked
with expression of the second thermodynam-
ical principle and stipulates inequality that
must verify ξ and its dual force πf , that is
to say, appears as a mathematical constraint
for the constitutive model definition.
To close the mathematic problem defined
in 1 we need to add all the behavior’s
relationships linking the primal unknowns
(ε(U), ξ, T ) to the associated dual forces
given by the set of variables (σ, πf , q).
The mechanical behavior equation is

σ = L(ε− γKξ + α(T − To)) (2)

where L is the Hook elasticity tensor and
K = dev(ε

ε̄ the tensor of phase induced strain
direction. The thermal behavior relationship
is simply given by the Fourier law such as

q = −λ∇T (3)

The most difficult relation to introduce, in
this model, is really the constitutive equa-
tion linking the Martensite fraction ξ to the
others variables and that obey to the in-
equality constraint given in 1. The Raniecki-
Lexcellent model define this relation such as



:

ξ ∈ ]0, 1[ (4)

ξ̇ =
3µγ ˙̄ε− ρ∆soṪ

ρ( A1
1−ξ − 2φit(T )) + 3µγ3

.(πf ≥ 0).( ˙̄σ > 0)

+
3µγ ˙̄ε− ρ∆soṪ

ρ(A2
ξ − 2φit(T )) + 3µγ3

.(πf ≤ 0).( ˙̄σ < 0)

ξ̇ = g(ε̄, πf , ξ) (5)

where A1 and A2 are model parameters that
can be identified by experimental measure-
ment. Equation 5 represents two ’state-
flow’ Differential Algebraic Equations (i.e
DAE) modeling, respectively, the direct
phase transformation Austenite to Marten-
site (A ← M) when boolean function(πf ≥
0).( ˙̄σ > 0) = 1 and the reverse one M ←
A when boolean (πf ≤ 0).( ˙̄σ < 0) = 1.
The boolean function insures that inequal-
ity constraint in 1 is verified, so equation 5
can replace it in the problem formulation.
This equation constitutes the real difficulty
of the numerical implementation especially
when transient dynamical simulation is com-
puted. Indeed, ’static’ implementation has
already been realized and used for comput-
ing equivalent complex modulus for harmon-
ics non linear response analysis [11, 6, 8].
This static computation allow us to describe
stress-strain relationship with internal loop,
as presented in figure 2, for complex mechan-
ical system.

Figure 2: Static model capability : internal
loops representation

4 Comsol R© Transient Model
Implementation and
Numerical Results

The presented results here only concern
isothermal implementation where tempera-
ture is considered as constant. The aim of
this first step is only to study capability of
the software to integrate non linear prob-
lem incorporating ’stateflow’ Differential Al-
gebraic Equations. In this context, the prob-
lem formulation is also given by

ρÜ(x, t)− L∇(ε− γKξ) = f(x, t) ∀x ∈ Ω
ξ̇ = g(ε̄, πf , ξ) ∀x ∈ Ω
σ.n = F (x, t) ∀x ∈ Γt
U = Uo(x, t) ∀x ∈ Γu

(6)

4.1 Comsol software R©
Implementation

The numerical implementation into Comsol
software R© is based on the resolution of a
coupled problem between a weak formula-
tion of first equation of (6) and a Equation-
Based modeling of the second equation.
Each boolean operator used in the formula-
tion has been replaced by smoothed Heavi-
side function with continuous first derivative
flsc1hs in Comsol. An implicit time-stepping
scheme is used for the time-dependent solver
algorithm, based on DASPK solver [4]
(variable-order and variable-stepsize back-
ward differentiation). The nonlinear system
of equations at each time step is solved us-
ing a Newton-Raphson scheme. The tangent
unsymmetric sparse linear system is finally
solved using direct UMFPACK solver [1].
In the context of transient dynamics, such
as responses to impacts, some numerical
tests have shown that the convergence of the
solvers was quite bad, inducing very large
computation times or even not converged re-
sults. One of the main reasons for this is
undoubtely the strong nonlinearity of the ki-
netic law 5. Trying to impose those expres-
sions directly leads to very small time steps
or algorithms stops. The way which has been
chosen in this case for smoothing the numer-
ical difficulties induced by the kinetic law, is
to add an inertial term in it, which can be
justified both numerically and physically:

• In a numerical point of view, the in-
ertial terms will smooth the equation,



changing it from a first order to a sec-
ond order one.

• In a physical point of view, the austen-
ite to martensite transformation is not
instantaneous, and it has been ob-
served that the speed of transforma-
tion is linked to the speed of sound in
the alloy. This term could have a sig-
nificant impact when structural solici-
tations induce speeds which are com-
parable to the sound velocity, while be-
ing negligible for quasi-static or "low-
frequency range" applications.

The kinetic law 5 has then been modified to
:

tmξ̈ + ξ̇ = f(σvm, πf , ξ) (7)

in which tm is a parameter which can be cho-
sen depending on the speed of sound in the
alloy, it is homogeneous to a relaxation time.

4.2 Numerical results

Figure 3: Boundary Conditions and Mesh of
the 2D-structure

The structure which has been used in the
numerical simulations is a 2D plane stress
component, shown on figure 3. Its dimen-
sions are 0.5 cm by 10 cm, and the beam is
clamped in x = 0 and vertically guided in
x = 0.1m. Two observing points are shown
on the figure. The mesh has 2048 quadratic
TRI6 elements for the mechanical solver and
2048 linear TRI3 elements for the martensite
rate distribution solver, resulting in a total
of 19115 degrees of freedom (displacement
for the structure and martensite rate).
The impact force is applied on the upper
part of the beam as shown on figure 3, dur-
ing 1ms. The composition of the SMA used
in the numerical applications is CuAlBe.
Its characteristic phase transformation tem-
peratures measured by electrical resistance
evolution are : M0

f = 191K, M0
S = 213K,

A0
S = 205K, A0

F = 221K. The mate-
rial Parameters are : E = 7.5 · 1010Pa,
ρ = 8129kg · m−3, ∆u∗ = 2871.6J · m−3,
∆s∗ = 11J · m−3, u0 = 100.3J · m−3,
γ = 0.0295, α = 0.055, Cv = 490J · kg−1,

α0 = 17 · 10−6K−1.
As a first observation from the numerical
tests, one can observe that the phase trans-
formation has a significant effect on the
global damping. On figure 4, two results are
shown : the first one is related to the SMA
calculation corresponding to the above de-
scription, and the second one corresponding
to a linear equivalent material (same resolu-
tion, with an imposed zero martensite rate).
The curve shows the vertical displacement of
observing point, and one can clearly observe
that the SMA decrease is faster than the
linear one. The time response of the linear
model has a frequency of 360 Hz associated
to a damping ratio of 0.11, while the time
response of the SMA model has a frequency
of 243 Hz and a damping ratio of 0.24.
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Figure 4: Vertical displacement of observing
point, comparison SMA/Lin

Figure 5: Martensite rate distribution at t = 1
ms (end of impact)

On figure 5, one can observe the spatial dis-
placement of the structure, and the marten-
site rate at time of impact end. The marten-
site rate has a maximal value on the zones



in which the stress is maximal. One can
observe on figures 6 and 7 evolution of ξ
and πf : while the thermodynamic force is
negative, the martensite rate has a constant
zero value. As soon as the force becomes
positive, the rate increases, until the force
becomes negative, because up to 1 ms, the
time derivative of the Von Mises Stress is
always positive. So before 1 ms, each sign
change of the thermodynamic force induces
a inflexion in the curve of the martensite
rate.
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Figure 6: Time evolution of martensite rate at
observing points
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Figure 7: Time evolution of thermodynamic
force

One can also observe on figure 6 that the
model has a physical incoherence, since the
maximum martensite rate is above 1 (about
1.12), which has no physical meaning. This
particular point is undoubtely a critical
point in the model and will be of impor-
tance in the future works where bounded
constraints on ξ evolution will be explicitly
introduced in the modeling approach. A real

effort will also be made to regularize the
’stateflow’ DAE and improve convergence for
high speed response computation.

5 Modal Synthesis and
Dynamical Condensation
Methods for Accurate
Piezoelectric Systems
Impedance Computation

Now days, Piezoelectric transducers are
widely used in many physical and industrial
applications. Optimization of their behav-
ior is of major interest for smart system
design. In current practice, smart struc-
ture integration involves a broad multiphys-
ical modeling approach including mechan-
ics, smart materials, coupling effects and
electronics implementation. When global
energy optimization is considered, all cou-
pling mechanisms should be carefully intro-
duced in the simplest possible modeling pro-
cedure. For piezoelectric material these con-
straints involve the construction of a robust
model (simple and precise) able to represent
the piezoelectric coupling, or from another
perspective, to correctly implement piezo-
electric electromechanical impedances. This
latter perspective enables the optimization
and design of electronic devices connected
to the piezoelectric material. The objective
of this part is to present a model reduction
approach that yields a piezoelectric super
element guaranteeing accurate computation
of a piezoelectric transducer’s mechanically
coupled electrical impedance.
This part presents a short sum up of the de-
veloped approach for condensing piezoelec-
tric model previously published in [7]. We
propose, here, a new, simple and efficient
approach for piezoelectric condensation im-
plemented by using Comsol Multiphysics R©.
This allows the electronic coupling to be
fully used in the optimization of passive
shunted piezoelectric transducers, energy
harvesting piezoelectric systems or dense
distributed transducers. The obtained
model through this approach is also ver-
satile, of small size, and is therefore quite
tractable for use in intensive computation al-
gorithms.



5.1 Theoretical Model Synthesis
for substructuring approach

Let us consider a generic piezo-mechanical
transducer connected to an external complex
mechanical system through interfaces. In or-
der to take into account the piezoelectric in-
duced voltage field, fundamental to precisely
describe piezoelectric coupling behavior (as
demonstrated in [3]), we use a 3D Finite el-
ement description of the complete system.
Introducing all set of boundary conditions,
one obtain the standard set of ordinary dif-
ferential equation :

Mii Mic 0 0
MT
ic Mcc 0 0

0 0 0 0
0 0 0 0



ẅi
ẅc
V̈

V̈p

+


Kii Kic Ei Eip
KT
ic Kcc Ec Ecp

−ETi −ETc C Cp
−ETip −ETcp CTcp Cpp



wi
wc
V
Vp

 =


f + To∑
i∈[1..I] T

s
ui

0
Qp


wsc − wc = 0

(8)
The transducer degrees of freedom are split
as wi for the inner part and wc for the con-
necting part of the displacement. Partition
of the voltage terms is introduced by using
V for unknown voltage degrees of freedom
and Vp for the applied piezoelectric poten-
tial. The output equation for each electrode
Spvq is the last line of the matrix equation in
(8).
The proposed condensation method is based
on using the static Schur complement [5]
of the stiffness matrix obtained in equation
(8).This approach has been used in previ-
ous work [5, 12, 13] to reduce the number
of piezoelectric degrees of freedom for large
system computation.
First, one consider the Schur complement
applied to the piezoelectric set of equations
(8). As equation (8) indicates, the electrical
behavior response of such a system is essen-
tially static. In fact, by simply introducing
the Schur complement of the first 3×3 bloc of
the stiffness matrix K, one obtain a new ex-
pression of the dynamical equilibrium of our
piezoelectric system. Secondly, by introduc-

ing the matrix product
[
−C−1Cp

I

]
Vp =

[
V̄ op
I

]
Vp = V op Vp gathering all the static

dielectric solutions,for each different applied
voltages and by adopting a simplified bloc
matrix notation, equation (8) can be rewrit-
ten as:

Mẅ + (K + EC−1ET )w = −Eop .V op .Vp + F + T
−ET .w + CV̄ = −C̄op .V op .Vp

(9)
Qp = −V oTp EoTp w + CopVp (10)

where F and T stands for the external dis-
turbing forces and the connection reactions,
V̄ = V − V̄ op Vp is the induced electrical po-

tential, w =
[
wi
wc

]
, Eop =

[
Ei Eip
Ec Ecp

]
,

E =
[
Ei
Ec

]
, C̄op =

[
C Cp

]
, and M

and K are respectively the first 2 × 2 bloc
of the mass and stiffness matrices in equa-
tion (??). We also introduce the equiva-
lent piezoelectric capacity (for zero displace-
ment) Cop = Cpp − CTp C−1Cp.
The direct use of Craig and Bampton meth-
ods to condense such piezoelectric coupled
system in (8) would introduce a full mass
matrix, coupling the electrical voltage de-
grees of freedom to the other generalized co-
ordinates. Thus, we would use a second elec-
trical inputs term V̈p which is not intrinsi-
cally a desirable approach.
The key novelty of our proposed method is to
add the dual static displacement field adjoint
to the imposed piezoelectric force −Eop .V op in
(9) to the original Craig and Bampton basis.
Therefore, the proposed approximation basis
may be represented as 3 sets of displacement
fields:

1. The classical static Craig and Bamp-
ton displacement field corresponding
to the static solutions of the uni-
tary non-homogeneous Dirichlet im-
posed connecting conditions. These
fields are constrained to be orthogo-
nal to the applied piezoelectric force.

The solutions Wu =
[{

wui

Vui

}
∀i

]
are

also solutions of the generic mechani-
cal problem

(K + EC−1ET )wui
= 0

−ET .wui
+ CVui

= 0
Bu(i, :)wui

= 1
−wTui

EopV
o
p = 0

(11)



where Bu represents the localization
boolean matrix of the connecting de-
grees of freedom such as for each i
designating a particular connecting de-
gree of freedom Bu(i, :)w = wc(i) = 1,
where Bu(i, :) is the ith row of Bu.

2. A set of the dual displacement fields
adjoint to the piezoelectric applied
forces computed with homogeneous
connecting Dirichlet condition. These

displacements Wvp
=
{[

wvp

Vvp

]}
∀p

are solutions of the generic mechanical
problem

(K + EC−1ET )wvp = 0
−ETwvp

+ CVvp
= 0

Buwvp
= 0

−wTvp
EopV

o
p (:, p) = 1

(12)

for each p applied unitary static poten-
tial vector V op (:, p) (V op (:, p) represents
the pth column of the static dielectric
solutions matrix V op ).

3. A set of fields that are the inner normal
modes with homogeneous Dirichlet
connecting conditions, orthogonal to
the piezoelectric applied forces. These
N fields are represented as ΦN =[{

φn
Vφn

}
∀n

]
and are the first N so-

lutions of the eigenvalue problem rep-
resented by

(−ω2
nM + (K + EC−1ET ))φn = 0

−ETφn + CVφn
= 0

Buφn = 0
−φTn

[
E Ep

]
V op = 0

(13)

The number of degrees of freedom in equa-
tions (8) can also be reduced by simply as-
suming serial truncation. By using the clas-
sical covariant transformation, Equations
(8) can be reduced to Mcc Mcp Mcn

MT
cp Mpp Mpn

MT
cn MT

pn IN

 ẅc
η̈p
η̈n

+ Kcc Kcp 0
KT
cp Kpp 0
0 0 Ω2

N

 wc
ηp
ηn

 = ∑i∈[1..I] T
s
ui

0
0

+

 0
Ip
0

 .Vp + F + To

wsc − wc = 0
(14)

and

qp =
[

0 Ip 0
]  wc

ηp
ηn

+ CopVp (15)

where IN stands for the N order unitary ma-
trix, ΩN for the diagonal matrix of the eigen-
values ωn solutions of (12), and F and T are
the projection of the exterior applied forces
onto the basis.

5.2 Comsol Multiphysics R©
Implementation for
Modeling of a Piezostack
Transducer

5.2.1 System overview

The structure of interest is depicted in fig-
ure 8. It is a 2D plane stress state model
of a beam element (substructure 2) con-
nected to an active substructure containing
a piezostack transducer. The ends of the
beam are assumed to be clamped. The main
aim of our computation is to furnish an accu-
rate piezoelectric super element of the active
substructure by using the methodology de-
veloped above. The final assembled system
should exhibit the same static and dynamic
behavior as a directly meshed structure and
therefore the same impedance.

Stack Piezoelectric : 6 layers

Substructure 1 Substructure 2

Interface Clamped section

Clamped section

Figure 8: Mechanical system overview,
indicating substructuring between piezoelectric

section and passive section

The active substructure (substructure 1 in
figure 8) is more precisely depicted in figure
9. The mechanical characteristics are steel
for the beam and classical PZT(P1.91) for
the piezostack.
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Figure 9: Details of Active Substructure

The mechanical boundary conditions in-
dicated in figure 9 are clamped on the
left end and "Bernoulli Euler" kinematic
fields on the right-hand interface. On this
right-hand interface, the 2D displacements
ui(y, t) and wi(y, t), respectively along axis
Ox and Oy, are given so that ui(y, t) =
uoi (t) − (y − lr

2 )θoi (t) and wi(y, t) = woi (t)
where lr represents the section height.
The electrical boundary conditions are also
depicted in figure 9. The lateral edges of
each stack layer are free of electrical charge.
The connecting stack interfaces are alter-
natively grounded and subjected to an ap-
plied common electrical potential Vp. The
piezostack component is connected to the
support at the center of its left- and right-
hand face to simulate a ball joint.
The initial mesh has 1312 Lagrange
Quadratic triangle elements with four Gauss
points per element. The initial total number
of degrees of freedom to mesh this part is
7182. Mesh cases 2 has 20490 degrees of free-
dom for modeling the active part and Meash
case 3 refines the passive mesh density by
adding 3778 degrees of freedom. After con-
densation the active substructure has always
9 generalized degrees of freedom.

5.3 Remarks on Comsol
Multiphysic R© software
implementation

Comsol Multiphysic R© software is used for
implementing the model. The necessary im-
plementation of non-classical Dirichlet con-
straints, as in equations (11), (12) and (13),
may be directly introduced using this soft-
ware platform. The piezoelectric dual con-
straint is introduced as a sub-domain inte-
gral constraint. Integrations are carried out

in each piezoelectric sub-domain by using an
electro-static field V op (here p = 1) obtained
by solving equation (??), as indicated by

DualConst =
∫

Ωp

−eT∇V op ∇symδwdΩ

(16)
This is introduced in Comsol Multiphysic R©
software by using Subdomain Integration
Variables such as :

Vs1x=’-e33_smppn*Ex_es/S’
Vs1y=’-e31_smppn*Ex_es/S’
Vs1xy=’-e15_smppn*Ey_es/S’
Vcont1=’-thickness_smppn*...

(Vs1x*ex_smppn+Vs1y*ey_smppn+...
2*Vs1xy*exy_smppn)’}};

these terms being added as a Point Con-
straint to be set to 0 as in equation (11)
and (13) or to 1 as in equation (12) de-
pending on each step of the computations as
presented above. The global assempbling is
made of successive computation with Com-
sol Multiphysic R©. Initially we compute the
electro-static field V op by solving in piezo-
electric domains electrostatic problem with
the corresponding permittivity data. So,
static and eigenvalue problem are solved by
setting constant to imposed connecting and
the dual constraints (16). The connecting
fields are obtained by imposing successively
each interface degrees of freedom (i.e here
Ux,Uy,Rotz) to 1 and dual constraint (i.e :
Vcont1) to 0

% Constants
fem.const = {’Vin’,’1’, ...

’Rotz’,’0’, ...
’Ux’,’1’, ...
’Uy’,’0’, ...
’Vcont1’,’0’};

or for dual piezoelectric field , V cont1 = 1
and the other constant are 0. The eigenvalue
problem are solved with all constant equal to
0.
The assembling super element is made by
projecting the initial problem onto these
computed basis. Each term are obtained
by using ’postint’ command on a complex
assembled fields made of each pair of basis
vectors:

femTot.sol=femsol(femMod.sol.u(:,ii)+...
i*(femMod.sol.u(:,jj)));



M(ii,jj)=postint(femTot,...
’rho_smpn*thickness_smpn*...
(real(u)*imag(u)+real(v)*imag(v))’,...

K(ii,jj)=(postint(femTot,’thickness_smpn*...
(imag(ex_smpn)*real(sx_smpn)+...
imag(ey_smpn)*real(sy_smpn)+...
2*imag(exy_smpn)*real(sxy_smpn))’,...

5.4 Obtained Results

The main interest of the proposed method
is the ability to compute the global piezo-
electric response functions by taking into ac-
count the global behavior of such a system.
To demonstrate this capability, figure 10 de-
picts the frequency response function of the
piezoelectric charge for a unit voltage input,
qp(ω)
Vp(ω) . Results for the four mesh cases are
shown: the global mesh (direct computa-
tion), and refined mesh 1, 2 and 3. The
figure does not reveal any "visual" difference
between the results. We note the well-known
closed poles/zeros location of the electric
transfer function for a piezoelectric system.
The capability to compute these quantities
are fundamental for optimizing active or pas-
sive control systems that use such a piezo-
electric transducer[9, 10].

Figure 10: FRF qp(ω)

Vp(ω)
for the global mesh

(dotted line), refined mesh 1 (dash line), 2
(dashdot line) and 3 (plain line)

The five first poles (resonance frequencies)
and zeros (antiresonance frequencies) of the
electrical transfer function qp(ω)

Vp(ω) are very
closed that confirm accuracy of our proposed
approach. Notice that the substructuring
approach results are precise enough to com-
pute poles and zeros location with a max-
imum error, here, of about 0.2 % with the

initial mesh. The convergence of the method
is clearly indicated by this set of numerical
tests.

6 Conclusion

Through the description of two examples, we
underline, on this paper, the need of efficient
and versatile tools for numerical simulation
of linear or non linear multiphysics system
when new type of smart structure is studied.
Our developed approaches aims at building
rapid and dedicated model of smart mate-
rial interaction for intensive mechanical op-
timization computation. This problem need
conjunction of physical analysis and mod-
eling, clever problem formulation and ded-
icated numerical tools for solving (including
condensation techniques). The used of Com-
sol Multiphysic R© software allows us to effi-
ciently play with problem formulation in an
open software easy to use. Numerical solving
can also be done by directly using Comsol’s
toolbox but, also, by implementing our own
approach. Interface with Matlab (or Com-
sol Script R©) allow us to develop our own
numerical model on a generic applied mathe-
matic platform where many complementary
numerical tools are provided (’home made’
softwares, open toolbox...). This is a cru-
cial point for the success of our future smart
system development.
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