

Electrothermally Actuated MEMS Based Gecko Foot for Robotics

HARSHIT SINHA
Dept. of Electronics & Communications
Birla Institute of Technology Mesra

OVERVIEW:

- Introduction: Gecko Foot
- Electrothermally actuated Gecko Foot
- Proposed Microhair Design
- Use of COMSOL
- Observations & Results
- Application
- Future Scope
- References

INTRODUCTION:

- MEMS → Micro-Electro-Mechanical-Systems
- It is the technology of very small devices.
- MEMS enables the combination of sensors, actuators, mechanical components and also electronics on a single base (Si or Ge).
- Has the most wide-spread applications.
- Lot of scope for inventions.

GECKO FOOT:

- Uses dry adhesion forces such as van der Waals forces to climb walls.
- This adhesion is achieved by Microhairs and Nanohairs present on Gecko foot.

GECKO FOOT (Contd.)

- Microhairs(seta) on the gecko foot is an intricate biological structure with hierarchical nanosections and microsections
- It has billions of nanoscale hairs on its feet that are in contact with surfaces while it climbs.
- Nanohairs(spatula) attached to the microhairs are complex structures, and are responsible for dry adhesion i.e. Vander Waals forces.

ELECTROTHERMALLY ACTUATED GECKO FOOT

 Microhairs are actuated to support Dry Adhesion.

 Electrothermal actuation of microhair counterbalances the reaction forces acting on it aiding the Dry adhesion mechanism.

ELECTROTHERMAL ACTUATION (WORKING PRINCIPLE)

- Deflection is produced by differential heating of the two arms which vary in thickness.
- Current is passed, the thinner arm heats up and expands more as compared to the thicker arm.
- Tip deflection is produced due to this asymmetric expansion.
- Provides greater displacements in comparison to electrostatic actuators.

WORKING PRINCIPLE:

Fig. 1. Electrothermal actuator.

Fig. 2. Electrical equivalent of the actuator.

$$R = 1 / \sigma \cdot (l / A)$$

$$H = I^2 \cdot R = V^2 / R$$

PROPOSED MICROHAIR DESIGN

Fig.. Top View of the microhair in XY plane

Fig.. 3-D View of the microhair

FINITE ELEMENT ANALYSIS:

Fig. Top View of the microhair after applying a mesh.

Fig. 3-D view of the microhair after applying a mesh.

MODAL ANALYSIS

- Modal analysis is the study of the dynamic properties of structures under vibrational excitation.
- Its purpose is to find the shapes and frequencies at which the structure amplifies the effect of a load.
- It gives specific information on the characteristics of the structure instead of reporting a response.
- It determines the critical points of a structure and the responses under various constraints.
- Helps in finding flaws or weakness of the structure.

RESULTS

Fig. Stress Analysis Result

Fig. Nanohair Displacement

MODAL ANALYSIS RESULTS

OBSERVATIONS

	Stress (N/m²)	Max Deflection (μm)	Max Strain
Without Actuation	1.08e6	0.293	8.85e-3
With Actuation	5.85e5	7.2e-3	6.87e-7

DISCUSSION

- Both the designs have achieved the requisite objective.
- The number of nanohairs in actuated structure is significantly lesser.
- The actuation model has a superior performance compared to non-actuation model.
- It decreases the complexity of structure by reducing the no. of naohairs.
- This leads to simplification of the fabrication process manifolds.

APPLICATIONS

- Microhairs can be triggered using VLSI circuits to build a functional microbot.
- By controlling the trigger pulses motion of the bot can be controlled.
- Nano robotics and Micro robotics.
- Medical application: Minimal invasive surgeries.
- Space application: inspect and repair space vehicles
- Industrial application: Petroleum Industries and Nuclear Power Plants

FUTURE SCOPE:

- More composite actuation systems can be implemented.
- Efficient performance yielding materials can be used.
- Fabrication and implementation in real time scenarios, will reveal more drawbacks.

 These can be rectified by slight alterations in the model design.

REFERENCES:

- C. Menon, M. Murphy, and M.Sitti, "Gecko inspired surface climbing robots," in Robotics and Biomimetics, 2004. ROBIO 2004. IEEE International Conference on, 2004, pp.431-436.
- Domenico Campolo, Steven Jones and Ronald S. Fearing "Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces", Department of EECS, University of California, Berkeley, CA.
- A.R. Kalairasi and Dr. S.Hosimin Thilagar, "Design and Finite Element Analysis of Electrothermal Compliant Microactuators," Anna University, Chennai.
- K. Autumn, Liang, Y. A., S. T. Hsieh, W. Zesch, W.-P. Chan, R. Fearing, R. J. Full, and T. W. Kenny, "Adhesion force measurements on single gecko setae", Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop, 200033-38
- S. M. Karbosi, M. Shamshrisar, M. Naraghi and M. Manoufi, "Optimal design analysis of electro thermally driven micro-actuators", Microsystem. Technol, pp. 1065-1071, (2010).
- MEMS Model Library Manual, "Gecko foot", COMSOL Multiphysics 4.4
- M. Sitti and R.S. Fearing, "Synthetic Gecko Foot-Hair Micro/Nano-Structures for Future Wall-Climbing Robots," Proc. IEEE Robotics and Automation Conf., Sept. 2003.

THANK YOU