<section-header><section-header><section-header></section-header></section-header></section-header>	<section-header></section-header>	Vall-Cooled Fixed-Bo Gas-Phase Fischer-' A. Nanduri and I Department of Chemical and I Texas A&M-Kingsville, K	ed Reactor Model for Fropsch Synthesis P. L. Mills Natural Gas Engineering ingsville, TX, USA
	Introdu	<u>ction</u>	<u>Objectives</u>
Fischer-Tropsch syn syngas (CO+H ₂) in the paraffins, olefins and Reactors (MTFBR) and FTS processes. The se both the tube and se wall-cooled fixed-bed comparing the perfor cylindrical catalyst per thermodynamic phen	thesis (FTS) is a highly e presence of Fe/Co/Ru-b d oxygenates, often knows d Slurry Bubble Column cale-up of MTFBR is comp hell coolant regions. The l reactor using COMSOI mance of a fixed-bed reac article shapes by account omena using micro kinetic	exothermic polymerization reaction of based catalysts to produce a wide range of in as <i>syncrude</i> . Multi-Tubular Fixed Bed Reactors (SBCR) are widely employed for plicated by the occurrence of hot spots in emphasis of this research is to model a 2. Multiphysics. This poster focuses on etor with cylindrical, spherical and hollow ing for transport-kinetic interactions and c rate expressions.	 Employ a 1-D heterogeneous axial dispersion model to describe the specie and energy balances in a wall-cooled fixed-bed reactor for the Fischer-Tropsch (FT) reaction network using micro-kinetic rate expressions. Assess the role of catalyst particle shape on the reactor scale FT product distribution. Incorporate a Modified Soave-Redlich-Kwong (MSRK) equation of state (EOS) into the particle-scale and reactor-scale transport-kinetics model to more accurately describe the vapor-liquid-equilibrium (VLE) behavior of the FT product distribution.
Fe-Based Olefin F	And Inermody Re-adsorption Kinetics	Modified Soave-Redlich-Kwong EOS	<u>Numerical Extrusion Coupling</u> and Linear Projection Strategy

Reactor Length, L _r	12 m
Tube Diameter, D _r	5 cm
Pressure, P _{inlet}	25 bar & 30 bar
Superficial Velocity, u _s	0.55 m/s
Overall Heat Transfer Coefficient, U _{overall}	364 W/m ² K
T _{cool}	493 K
T _{inlet}	493 K
Dimensions of cylindrical pellet	L = 3 mm and $R = 1 mm$
Dimensions of spherical pellet	R = 1.5 mm L = 3 mm, R _o = 2 mm & R _i = 1 mm
Dimensions of hollow cylindrical pellet	
Density of pellet, ρ_p	1.95 x 10 ⁶ (gm/m ³)
Porosity of pellet,ε	0.51
Tortuosity, τ	2.6

- A 2-D catalyst pellet model coupled with a 1-D heterogeneous axial dispersion reactor model can be used to analyze both particle-level and reactor-level performance of different catalyst particle shapes.
- Micro kinetic rate equations, when coupled with intraparticle transport effects and vapor-liquid equilibrium phenomena, captures the transport-kinetic interactions and phase behavior for gas-phase FT catalysts on both the particle-scale and reactor-scale.

• The CO conversion and intra-particle liquid to vapor (L/V) fraction results suggest that hollow rings are preferred over spherical and cylindrical particle shapes, but the magnitude of the hot spot is greater for this shape. This may lead to a higher rate of catalyst deactivation, reduce the catalyst mechanical strength and generate unsafe reactor operating conditions.

Excerpt from the Proceedings of the 2015 COMSOL Conference in Boston