Outline	Problem Statement	Numerical Method	Convergence Results

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

Kourosh M. Kalayeh¹, Jonathan S. Graf² Matthias K. Gobbert^{2*}

¹Department of Mechanical Engineering ²Department of Mathematics and Statistics University of Maryland, Baltimore County (UMBC) *Communicating author: gobbert@umbc.edu

> Acknowledgments: NSF, UMBC, HPCF, CIRC COMSOL Conference 2015

Outline:

- Problem statement: Poisson equation in 2-D / 3-D with smooth / non-smooth forcing
- FEM Theory for Lagrange elements and regular mesh refinement
- Results: FEM convergence for smooth / non-smooth forcing

Poisson equation with Dirichlet boundary conditions in $\Omega = (-1, 1)^2$ for 2-D and in $\Omega = (-1, 1)^3$ for 3-D

$$-\Delta u = f \quad \text{in } \Omega, \tag{1}$$

$$u = r \quad \text{on } \partial\Omega,\tag{2}$$

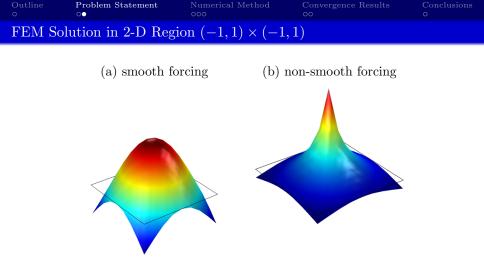
• Smooth forcing $f \in L^2(\Omega)$ and r in (1)–(2) such that PDE solution is

$$u(\mathbf{x}) = \cos\left(\frac{\pi}{2} \|\mathbf{x}\|_{2}\right) \quad \text{for } d = 2,3 \tag{3}$$

• Non-smooth forcing $f = \delta \notin L^2(\Omega)$ and r in (1)–(2) such that PDE solution is

$$u(\mathbf{x}) = \begin{cases} \frac{-\ln\sqrt{x^2 + y^2}}{2\pi} & \text{for } d = 2, \\ \frac{1}{4\pi\sqrt{x^2 + y^2 + z^2}} & \text{for } d = 3 \end{cases}$$
(4)

The Dirac delta distribution $\delta(\mathbf{x})$ models a point source at $\hat{\mathbf{x}} \in \Omega$ mathematically by requiring $\delta(\mathbf{x} - \hat{\mathbf{x}}) = 0$ for all $\mathbf{x} \neq \hat{\mathbf{x}}$, while simultaneously satisfying $\int_{\Omega} \varphi(\mathbf{x}) \, \delta(\mathbf{x} - \hat{\mathbf{x}}) \, d\mathbf{x} = \varphi(\hat{\mathbf{x}})$ for any continuous function $\varphi(\mathbf{x})$.



Three-dimensional view of the FEM solution in 2-D region $(-1, 1) \times (-1, 1)$ for the Poisson equation with (a) smooth forcing and (b) non-smooth forcing using linear Lagrange elements with 256 triangles.

• Finite element solution u_h has error against PDE solution u of the form

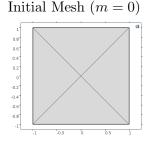
$$\|u - u_h\|_{L^2(\Omega)} \le C h^q, \quad \text{as } h \to 0, \tag{5}$$

where C is a problem-dependent constant independent of h and q is the convergence order of the FEM, as the mesh spacing h decreases.

- For Lagrange elements with piecewise polynomial degree p, the convergence order is q = p + 1.
- But the regularity order k of the Sobolev space of the PDE solution $u \in H^k(\Omega)$ limits the convergence order to $q = \min\{k, p+1\}$ in (5).
- For the smooth problem, we have k ≥ 2 in u ∈ H^k(Ω) and obtain the optimal convergence order of q = p + 1 for Lagrange elements with degree p. Specifically, q = 2 for linear Lagrange elements with p = 1.
- For the non-smooth problem, we have k = 2 − d/2 for Ω ⊂ ℝ^d and the convergence order q is limited to q = 1.0 for d = 2 and q = 0.5 for d = 3 for any Lagrange elements with degree p ≥ 1.

Finite element data for meshes in 2-D

- Uniform mesh refinement level m
- N_e = number of elements in mesh
- N = number of degrees of freedom (DOF)
- h =maximum side length of an element in the mesh
- The origin $\mathbf{x} = 0$ is enforced as a mesh point



Mesh Refinement Data

m	N_e	$N = \mathrm{DOF}$	h
0	4	5	2.0000
1	16	13	1.0000
2	64	41	0.5000
3	256	145	0.2500
4	1,024	545	0.1250
5	4,096	$2,\!113$	0.0625

Initial Mesh (m = 0)with exploded view

Finite Element Data in 3-D

- \bullet Uniform mesh refinement level m
- N_e = number of elements in the mesh
- N = number of degrees of freedom
- h =maximum side length of an element
- The origin $\mathbf{x} = 0$ is enforced as a mesh point

ſ	m	N_e	$N = \mathrm{DOF}$	h
	0	28	15	2.0000
	1	224	69	1.0000
	2	1,792	409	0.5000
	3	$14,\!336$	$2,\!801$	0.2500
	4	$114,\!688$	20,705	0.1250
	5	$917,\!504$	$159,\!169$	0.0625

Linear Lagrange elements (p = 1) for smooth test problem with m regular mesh refinements.

FEM error $E_m = \|u - u_h\|_{L^2}$ (convergence order $Q_m = \log_2(E_{m-1}/E_m)$):

2-D		3-D		
m	$E_m(Q_m)$	m	$E_m(Q_m)$	
0	1.105	0	1.132	
1	3.049e-01 (1.86)	1	3.481e-01 (1.70)	
2	8.387e-02 (1.86)	2	9.007e-02(1.95)	
3	2.177e-02(1.95)	3	2.273e-02(1.99)	
4	5.511e-03 (1.98)	4	5.690e-03 (2.00)	
5	$1.383e{-}03$ (1.99)	5	1.422e-03 (2.00)	

- FEM error decreases with mesh refinement.
- Observed convergence order independent of dimension q = 2 in 2-D and 3-D in $||u u_h||_{L^2} \le C h^q$

Linear Lagrange elements (p = 1) for non-smooth test problem with m regular mesh refinements.

FEM error $E_m = \|u - u_h\|_{L^2}$ (convergence order $Q_m = \log_2(E_{m-1}/E_m)$):

0.0

2-D		3-D		
	m	$E_m (Q_m)$	m	$E_m (Q_m)$
	0	9.332e-02	0	1.026e-01
	1	4.589e-02(1.02)	1	6.990e-02 (0.55)
	2	2.468e-02 (0.89)	2	4.842e-02(0.53)
	3	$1.256e-02 \ (0.97)$	3	3.410e-02(0.51)
	4	6.311e-03 (0.99)	4	2.410e-02(0.50)
	5	3.160e-03 (1.00)	5	$1.704e-02 \ (0.50)$

0 0

- FEM error decreases with mesh refinement
- Observed convergence order dimension-dependent q = 1 in 2-D and q = 0.5 in 3-D in $||u u_h||_{L^2} \leq C h^q$

- COMSOL FEM solution converges according to FEM theory $\|u u_h\|_{L^2} \leq C h^q$ as $h \to 0$ also in the presence of point source
- For smooth forcing f ∈ L²(Ω), convergence order q = 2 for all dimensions d = 2, 3.
- For non-smooth forcing f ∉ L²(Ω), convergence order dimension-dependent: q = 1 in 2-D and q = 0.5 in 3-D.

Recommendations for COMSOL usage:

- Control initial mesh creation (very coarse) and its refinement (regular) explicitly; 3-D default refinement is: split longest side!
- Control the degree of the Lagrange elements explicitly
- Use linear Lagrange elements for problems involving point sources modeled by Dirac delta distributions
- Use higher-order elements (quadratic is default) for smooth problems