The hygro-thermal improvement of a mounting anchoring system to fasten roof workmen to flat roofs

TU

Marcel van Aarle Henk Schellen

日日本市市市市市市市市市市市、2017日

COMSOL CONFERENCE 2014 CAMBRIDGE Technische Universiteit **Eindhoven** University of Technology

APPEND.

Content

- 1) Introduction
- 2) The anchoring system
- 3) Theory
- 4) Finite element method
- **5)** Study of variants
- 6) Measurements
- 7) Results
- 8) Conclusions

Introduction

- Protect workmen
- The anchoring system
- Steel rods

 thermal bridges
- TU/e investigated:
 - Effect COMSOL
 - Improvements
- Validation –

measurements

The anchoring system

18-09-2014 PAGE 2

The anchoring system

- Upper side base plate
- Drilled holes
- Threaded rods
- Expandable anchors
- Nuts wire ends
- Anchoring system Applied – sealed

base plate

Τι

Technische Universiteit **Eindhoven** University of Technology

/ unit Building Physics and Systems

Theory

Heat transfer

$$q_x = -\lambda \frac{\partial T}{\partial x}, \quad q_y = -\lambda \frac{\partial T}{\partial y}, \quad q_z = -\lambda \frac{\partial T}{\partial z}$$

- Heat balance
 - unsteady state

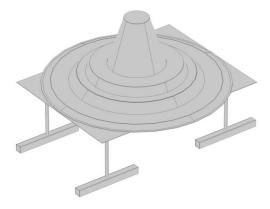
$$ho c \frac{\partial T}{\partial t} = div \ \lambda \ grad \ T$$

- Heat balance
 - steady state

$$-\lambda \left(\frac{\partial T}{\partial z}\right)_{s} = (h_{cv} + h_{r})(T_{rcv} - T_{s})$$

- constant surface coefficients
- Anchors → complex heat–conductive structure solvable: three-dimensional modeling TU/e Technische U

/ unit Building Physics and Systems


Finite element method

- → Comsol
- Anchoring system Model Builder
- Material properties

Thermal conductivity [W/mK]		
Steel	44.5	
Stainless steel	20	
Aluminum	200	
Insulation	0.04	
Nylon	0.26	

Table 2.

Table 1.

Boundary conditions

	Air temperature [°C]	Heat transfer coefficient [W/m²K]
Indoor	20	7.7
Outdoor	-10	25

Study of variants

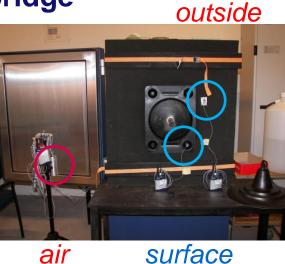
Variants:

- 1) Existing anchoring system, mounted on a steel roof
- **2)** Afterwards insulated holes
- 3) Isolation of the nuts in relation to the base plate
- 4) Afterwards insulated nuts by filling the holes
- **5)** Thermal insulation of the folding steel anchors

Results:

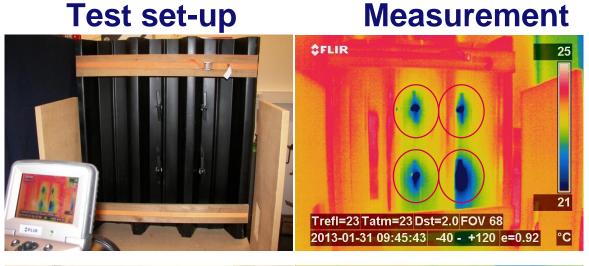
- 1) Additional heat loss
- 2) Temperature ratio dimensionless lowest indoor temperature

$$f = \frac{\theta_{si,\min} - \theta_e}{\theta_i - \theta_e}$$


Measurements

- Test set-up anchoring system
- **Temperature sensors:**
 - Inside/outside air
 - Surface slightest/largest thermal bridge
- Infrared thermal camera

surface air



18-09-2014

PAGE 7

Results

inside

Simulation

outside

e Technische Universiteit Eindhoven University of Technology

18-09-2014 PAGE 8

Conclusions

Comparison Comsol with mock-up results:

- 1) Thermal images quite lookalike
- 2) Quantitative results differ Temperature ratio's and heat loss
- Vertically mounted roof system climate cabinet Horizontal roof system
- R_c differ: mock-up and simulation

Thank you!

/ unit Building Physics and Systems

18-09-2014 PAGE 10