CFD Simulation of Internal Flowfield of Dual-mode Scramjet

Cameron Butcher, K. H. Yu Department of Aerospace Engineering University of Maryland, College Park

COMSOL Conference 2014

COMSOL CONFERENCE 2014 BOSTON

Outline

- Objectives and Approach
- Model Scramjet Description
- COMSOL Setup
- Isolator
- Combustor
- Conclusions
- Future Work

Objectives and Approach

- Determine COMSOL'S capabilities in generating scramjet flowfield features
- Analyze heat release pattern to reproduce experimental results
- Model geometry as one part
 - Very long simulation times (8+ hours)
 - Unable to generate shock trains
 - Difficult to converge
- Break into 2 separate portions
 - Up to 5x faster
 - Distinct shock train structures

Model Scramjet Description

- Dual-mode scramjet
 - 3 Main Parts:
 - Isolator
 - Combustor
 - Cavity

Isolator

Variable	Value	Units	Description
M_1	2.0419		Mach Number
T_1	699.7	К	Static Temperature
p_1	83304.2	Ра	Static Pressure
p_{o_1}	683928.9	Ра	Total Pressure
Re_h	154,650		Reynolds Number
\dot{m}_{total}	0.377	g/s	Total Fuel Mass Flow Rate

Combustor

COMSOL Setup

- Geometry: 2-D Space Dimension
- Physics: Turbulent High Mach Number Flow (CFD Module)
 - $k \epsilon$ (Slip, Wall Functions)
 - Spalart-Allmaras (No Slip)
- Studies: Set of 3 with Auxiliary Sweep for Each
 - Stationary ($k \epsilon$)
 - Stationary with Initialization (Spalart-Allmaras)

Isolator

- 0.5 [in] high, 8.5 [in] long
- Allows for pressure rise and to prevent inlet unstart
- Boundary layer separation and shock train formation
- Normal/Oblique Shock Trains

(a) Experimental Schlieren Image [2]

(b) Computational Schlieren Image

Isolator (2)

- Matched pressure rise
- Difference in shock structure
- Starting Location

Experimental Data from [1]

Combustor

- Diverging Area
- Fuel Injection, Ignitor
- Cavity for Flame Holding
- Combustion and Heat Release
- Used isolator exit conditions as combustor inlet

Conclusions

- Able to generate shock train in isolator
- Found that heat release is closest to 1/6 LHV of H_2
- Several Discrepancies
 - 3D -> 2D
 - Adiabatic Walls

- Pros:
 - Matched pressure at isolator exit
 - Low computational cost when split
- Cons:
 - Shock train structure
 - Difficulties implementing profiles
 - Single heat release domain
 - Full model

Future Work

- Change heat release domain:
 - Location
 - Size
 - Intensity
- Thermal Choking Comparison

References

- [1] Muñoz, Camilo A., Effect of Fin-Guided Fuel Injection on Supersonic Mixing and Combustion, PhD Dissertation, University of Maryland, College Park (2014).
- [2] Geerts, Jonathan, PhD Candidate at University of Maryland, College Park (2014).

