

α

Analysis of Spiral Resonator Filters

S. Yushanov, J.S. Crompton and K.C. Koppenhoefer AltaSim Technologies, Columbus, OH

Motivation

Spot Magn Det William

- Compact wireless systems
- Smaller form factor
- Multiple functionality
- High rate data transmission
- Filter arrays with high quality factors and minimal volume

Problem description

h.

- Microstrip spiral resonator
 - Etched microstrip

ε_r

Dielectric substrate

- Fractal spiral resonator
 - Two concentric Hilbert fractal curves
 - Magnetic metamaterials

W.

Model definition

- Microstrip treated as PEC
- Dielectric substrate of known permittivity
- PEC ground plane
- Lumped ports
- Air domain with scattering BC

Microstrip Spiral Resonator

- S₁₁ reflected signal and S₂₁ transmitted signal agree with experimental data
- Resonant frequency of 7.2GHz
- Low insertion losses with narrow stopband ~ 0.5 GHz

Microstrip Spiral Resonator

Electric field distribution

Bandstop Spiral Resonator Filter. f=6 GHz: Electric field norm (V/m) ▲ 2.34×10⁴ ▲ 1.42×10⁵ ×10³ ×10³ 2 2 1.8 1.8 1.6 1.6 0.8 0.8 0.6 0.6 0.4 0.4 y z x y z x 0.2 0.2 0 0 ₹ 2.33 ▼ 0.86 **High attenuation High transmission**

Below resonance

At resonance

Bandstop Spiral Resonator Filter. f=7.2 GHz: Electric field norm (V/m)

6

Fractal Spiral Resonator

- Highly attenuated signal
- Selectivity of the filter is 100 dB/GHz with a 3 dB reference insertion loss

Fractal Spiral Resonator

Electric field distribution

Below resonance

Fractal Spiral Resonator. f=2.9GHz Slice: emw.normE (V/m)

At resonance

Fractal Spiral Resonator. f=1.37GHz Slice: emw.normE (V/m)

▲ 2.82×10⁴

×10³

4.5

4

3.5

1.5

1

0.5

▼ 4.56

5

Summary

- Analyses of two spiral resonator designs:
 - Microstrip
 - Fractal
- Analysis of microstrip spiral resonator agrees with experimental measurements

