

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

AO@SW with Vrala: Simulations and Tests The Actuator Design and the Experimental Tests of a New Technology Large Deformable Mirror for Visible Wavelengths Adaptive Optics

C. Del Vecchio¹ G. Agapito¹ C. Arcidiacono¹ L. Carbonaro¹ F. Marignetti² E. De Santis² Y. Coia²

¹INAF–OAA Florence, Italy ²DIEI – University of Cassino, Italy

2012 Comsol Conference Milan, October 11 2012

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Outline

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Гіте-Domain

Control System Closed-Loop

Prototype

- Rationale
 - Background
 - Design Drivers
- Statics

2

3

4

- Approach
- Results
- Freq.-Domain
- Time-Domain
 - Control System
 - Closed-Loop
- 5 Prototype

Outline

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Fime-Domain

Control System Closed-Loop

Prototype

Rationale Background Design Drivers

- Statics
 - Approach
 - Results
- Freq.-Domain
- Time-Domain
 - Control System
 - Closed-Loop
- Prototype

Matching new science and new ELT discoveries

Vrala

Del Vecchio et al.

Rationale

Background Design

Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

- Starting from:
 - Possible and qualified synergies between ELTs and 8-m telescopes working at similar spatial resolution
- Given:
 - the telescope resolutions
 - the extensive use of AO on both classes
- The idea is:
 - visible AO at 8-m telescopes to match λ/D : $\frac{2.12e-6}{42}$ (ELT) $\approx \frac{.7e-6}{.8}$ (AO@SW)
- Looks promising:
 - The AO@SW simulations investigate this possibility [Agapito et al., 2012]

Outline

Vrala

Del Vecchio et al.

Rationale Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Rationale

- Background
- Design Drivers
- Statics
 - Approach
 - Results
- Freq.-Domain
- Time-Domain
 - Control System
 - Closed-Loop
- Prototype

Basic Requirements of High Order DM's The Specs are very Severe

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

rms force (turbulence correction)	.363 N
max force (static)	.36 N
max force (dynamic)	1.27 N
stroke (usable)	±150 μm
stroke (mechanical)	±200 μm
bandwidth	2 kHz
typical inter-actuator spacing	25 mm
typical actuator length	\leq 60 mm
typical mover mass	\leq 10 g

DM Stiffness vs. DM Thickness & Act Spacing The Plate Stiffness is Strongly Non-Linear

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

The plate stiffness $K_{\rm flax} \propto t^3 \times (1/d)^4$

t =thickness d = dimension

What if

- the inter-actuator spacing is slightly reduced
- the thickness is slightly increased

HIGHER ORDER DM $d = 30 \rightarrow 25 \text{ mm (16\%)}$ TICKER DM $t = 1.6 \rightarrow 2 \text{ mm (20\%)}$

Efficiency is crucial

Outline

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Гіте-Domain

Control System Closed-Loop

Prototype

Rationale

- Background
- Design Drivers
- 2 Statics
 - Approach
 - Results
 - Freq.-Domain
 - Time-Domain
 - Control System
 - Closed-Loop
 - Prototype

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Vrala

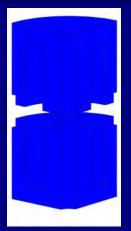
Del Vecchio et al.

Rationale Background

Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Vrala

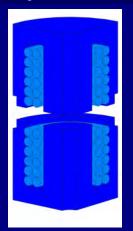
Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Vrala

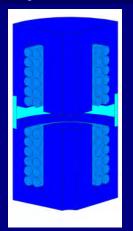
Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Vrala

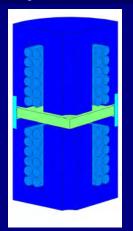
Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Vrala

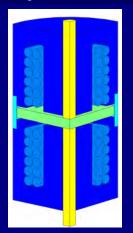
Del Vecchio et al.

Rationale Background

Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Vrala

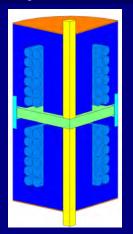
Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Vrala

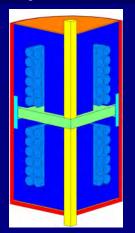
Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Vrala

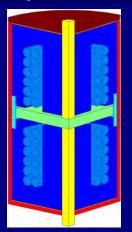
Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results


Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

Outline

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Гіте-Domain

Control System Closed-Loop

Prototype

Rationale

- Background
- Design Drivers

Statics

2

- Approach
- Results
- Freq.-Domain
- Time-Domain
 - Control System
 - Closed-Loop
- Prototype

The Efficiency

Optimizing the Geometry to Get good Performances

Vrala

Del Vecchio et al.

Rationale Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

 $arepsilon = \kappa(I) rac{arphi W_{coil} H_{coil}}{
ho 2 \pi R_{coil}}$

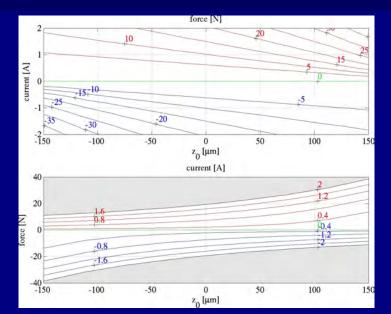
 $F = \kappa(I) (NI)^2$

Constraints

Parameters

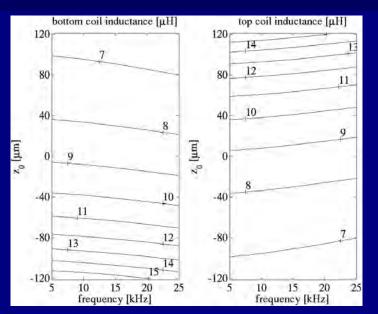
 ε 4.65 N \times W⁻¹

wire outer radius	120.0 μm
insulation thickness	10.0 μm
outer radius of stator	7 mm
inner radius of stator	1 mm
height of stator	7.5 mm
height of stator slot	5.9 mm
gap height	.2 mm
outer radius of mover	6.95 mm
inner radius of mover	0 mm
thickness of mover	1 mm
height of coil slot	5.9 mm
width of coil slot	2.3 mm
mean radius of coil slot	4.62 mm
filling factor	.627


The Force Function Running the Magnetostatics to Get F = f(z, l)

Del Vecchio et al.

- Rationale Background Design Drivers
- Statics
- Approach Results
- Freq.-Domain
- Time-Domair
- System Closed-Loop
- Prototype


Measuring the Displacement Getting the Function L = f(z)

Time-Domair

Control System Closed-Loop

The Governing Equation Selecting the Proper Damping

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

$$F = \frac{d^2 z}{dt^2} + 2\zeta \omega_0 \frac{dz}{dt} + \omega_0^2 z$$

$$\zeta = \frac{c}{2\sqrt{K(M+m_0)}}$$

$$\omega_0 = \sqrt{\frac{K}{m_0 + M}}$$

- z mover position
- K mirror bending stiffness
- *m*₀ mirror mass per actuator
- M mover & shaft mass

 $\zeta = 1$ avoids oscillations without loosing fastness

Outline

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

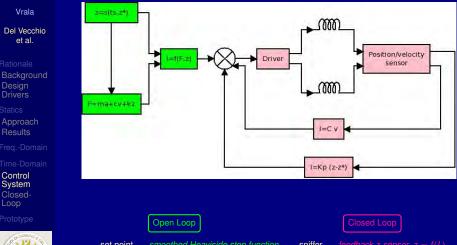
Freq.-Domair

Time-Domair

Control System Closed-Loop

Prototype

- Rationale
 - Background
 - Design Drivers
- Statics


4

- Approach
- Results
- Freq.-Domain
- Time-Domain
- Control System
 - Closed-Loop
- Prototype

A Simple Design

A Preshaping-based Control Logic \oplus a Sniffer-based Control Electronics

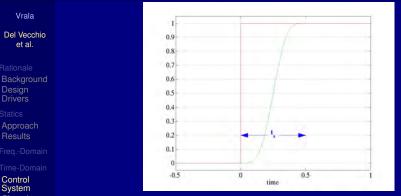
set point macro dynamics pre-shaper smoothed Heaviside step function 2nd-order system look-up table I = f(z, F)

sniffer driver

Vrala

et al

Design


Drivers

Results

Control

System

A Simple Design

Smoothing

Replace the non continuous step function with the smoothed Heaviside step function, a polynomial continuous up to the n-th derivative

A Simple Design

A Preshaping-based Control Logic \oplus a Sniffer-based Control Electronics

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

S/W key features The rising time $t_s = .5 \times 10^{-3}$ s is an input

A very simple PD feedback control through the open-loop command (*pre-shaping*)

H/W key features

The sniffer is a processor that acquires the voltage of the inductors, performs some computational tasks and infers the displacement

Driver and sniffer embedded in the same electronic board

Outline

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System

Closed-Loop

Prototype

Rationale

- Background
- Design Drivers
- Statics

4

- Approach
- Results
- Freq.-Domain
- Time-Domain
 - Control System
 - Closed-Loop

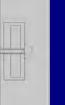
Vrala

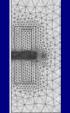
Del Vecchio et al.

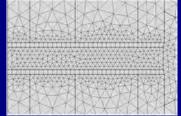
Rationale

Background Design Drivers

Statics


Approach Results


Freq.-Domain


Time-Domain

Control System Closed-Loop

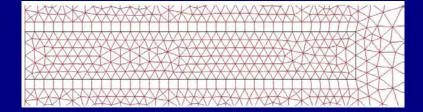
Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics


Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

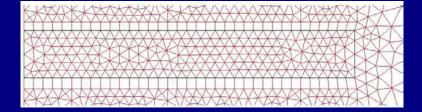
Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics


Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

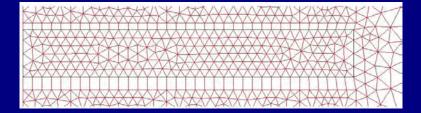
Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics


Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

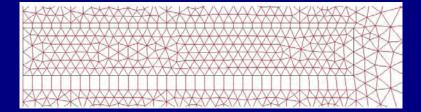
Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics


Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

A Severe Requirement The Results of the Smart Solution

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics


Approach Results

Freq.-Domair

Time-Doma Control System Closed-

Loop Prototype

Validating the Magnetostatics

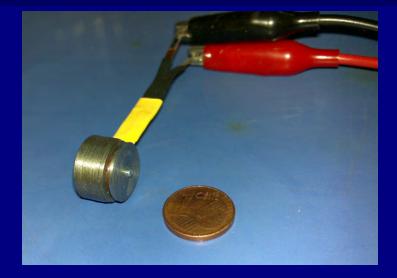
Vrala

Del Vecchio et al.

Rationale Background

Design Drivers

Statics


Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

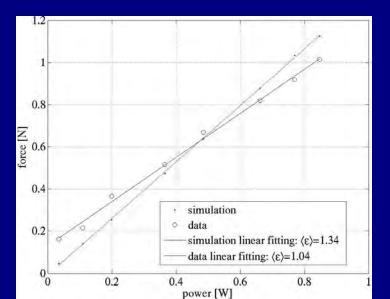
Validating the Magnetostatics The Preliminary Prototype

Del Vecchio et al.

Rationale

Background Design Drivers

Statics


Approach Results

Freq.-Domain

Time-Domain

System Closed-Loop

Lessons Learned & Future Work

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

A challenging project

Applying AO@SW corrections on a high-order, long-stroke, very large DM requires very large forces and unprecedented actuator densities

- Simple and very effective magnetic circuit
- All-in-one control electronics
 - position sensor
 - current driver

Lessons Learned & Future Work

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System Closed-Loop

Prototype

- The actuator can accomplish the demanding specifications with
 - $\epsilon = 4.65 \,\mathrm{N} imes \mathrm{W}^{-1}$
 - $t_s = .37 \,\mathrm{ms}$ for $\delta = 5 \,\mathrm{\mu m}$
 - $\Phi = 15 \, \text{mm}$

low power dissipation high speed small separations

• The numerical results are (statically) verified by a very simple, preliminary prototype

 \rightarrow

Lessons Learned & Future Work

Vrala

Del Vecchio et al.

Rationale

Background Design Drivers

Statics

Approach Results

Freq.-Domain

Time-Domain

Control System

Closed

Prototype

Alternative coil

• round wire \rightarrow strip $\Rightarrow \varphi = .627 \hookrightarrow .95$

Further computations

- closed loop frequency response
- more refined multiphysics
- 3D modeling
- Complete prototype + 4 × 4 demonstrator
 - possible construction issues
 - closed loop response
 - power dissipation
 - passive convective cooling?
 - without any Reference Body?

For Further Reading I

Vrala

Del Vecchio et al.

Appendix

 Agapito, G., Arcidiacono, C., Quiros-Pacheco, F., Puglisi, A., and Esposito, S. (2012).
 Infinite impulse response modal filtering in visible adaptive optics.
 In Ellerbroek, B. L., Marchetti, E., and Véran, J.-P., editors, *Adaptive Optics Systems III*, volume 8447 of *Proc. SPIE*. SPIE.

For Further Reading II

Vrala

Del Vecchio et al.

Appendix

Del Vecchio, C., Marignetti, F., Agapito, G., Tomassi, G., and Riccardi, A. (2010).
 Vrala: Designing and prototyping a novel, high-efficiency actuator for large adaptive mirrors.
 In Ellerbroek, B. L., Hart, M., Hubin, N., and Wizinowich, P. L., editors, *Adaptive Optics Systems*, volume 7036 of *Proc. SPIE*. SPIE.

