Modeling Microwave Waveguide Components: The Tuned Stub

Roger W. Pryor, Ph.D.
CEO

Pryor Knowledge Systems

Introduction to Modeling Microwave Waveguide Compoments: The Tumed Stub

What is a Stulb?

Modeling Microwave Waveguide Compoments: The Tumed Stulb

Introduction to Modeling Microwave Waveguide Compoments: The Tumed Stulb

What is a Stulb?

A Stub is a length of Transmission Line that is connected to an active circuit at one end only.

Modeling Microwave Waveguide Compoments: The Tumed Stub

Introduction to Modelimg Microwave Waveguide Components: The Tumed Stulb

WVart i̊s a Sturb?

A Sturb is a length off Tromsmissiom Line that is commected to an active cirreniit ar ome emdl omly.

What is a Tumed Stub?

Modeling Microwave Waveguide Compoments: The Thumed Stulb

Introduction to Modelimg Microwave Waveguide Components: The Tumed Stub

WVart is a Sturb?

A Sturb is a length off Tromsmissiom Kine that is commectedl to an active cirreuirit at ome emdl omly.

What is a Tumed Stulb?
A Tuned Stub is a Stub whose length is optimized to reflect the desired impedance at the circuit connection point.

Modeling Microwave Waveguide Compoments: The Tumed Stulb

Introduction to Modeling Microwave Waveguide Compoments:
The Tumed Stulb

What are the application attributes of Tuned Stub components?

Modeling Microwave Waveguide Compoments: The Tumed Stulb

Introduction to Modeling Microwave Waveguide Compoments:
The Tumed Stulb

What are the application attributes of Tuned Stub components?

Widely Employed Technology

Modeling Microwave Waveguide Compoments: The Tumed Stub

What are the application attributes of Tuned Stub components?

Widelely Employed Techmology
Large Literature for Waveguide Components

Modeling Microwave Waveguide Components: The Tumed Stub

What are the application attributes of Tuned Stub components?

Widely Employed Techmology
Large Litterature for WVaveguide Compoments
Critical Path Technology

Modeling Microwave Waveguide Compoments: The Tumed Stulb

What are the application attributes of Tuned Stub components?

Widely Employed Techmology
Large Litterature for WVaveguide Compomemts
Criticeal Patil Techmology
Power Transfer Optimization

Modeling Microwave Waveguide Compoments: The Tumed Stulb

Introduction to Modelimg Microwave Waveguiide Components:

The Tumed Stub

What are the application attributes of Tuned Stub components?

Widelely Employed Techmology
Large Litterature fior WVoveguide Compoments
Criticeal Path Techmology
Power Tlramsier Optimizatiom
Wide Frequency Range

Modeling Microwave Waveguide Compoments: The Tumed Stub

Introduction to Modelimg Microwave Waveguiide Components:

The Tumed Stulb

What are the application attributes of Tuned Stub components?

Widelely Employed Techmology
Large Litterature fior WVoveguide Compoments
Criticeal Path Techmology
Power Tlramsier Optimizatiom
Wide Frequemey Ramge
Minimize Signal Distortion

Modeling Microwave Waveguide Compoments: The Tumed Stub

Introduction to Modelimg Microwave Waveguiide Components: The Tumed Stulb

What are the application attributes of Tuned Stub components?

Widelely Employed Techmology
Large Litterature for WVaveguide Compoments
Criticeal Path Techmology
Power Tlramsier Optimizatiom
Wide Frequemey Ramge
Mininimize Sigmal Distortiom
Optimize Information Transfer

Modeling Microwave Waveguide Compoments: The Tumed Stub

Introduction to Modelimg Microwave Waveguide Compoments:
The Tumed Stulb

What type of Tuned Stub Waveguide Component is the focus of this COMSOL Multiphysics Model?

What type of Tuned Stub Waveguide Component is the focus of this COMSOL Multiphysics Model?

This COMSOL Multiphysics (Version 4.3) RIF Modulle Model is focused on an \mathbb{S}-parameter analysis of a two-port, Three Stulb Thuner in the firequency range 2.2 to 3.3 GHz 。

Modeling Microwave Waveguide Components: The Tumed Stub

Introduction to Modelimg Microwave Waveguide Components： The Tumed Stulb

The Built Model， Model Builder Tree：

```
IT. Model Builder
    \square口
```



```
* \12 Tuned_Stub_3AB.mph (root)
    \equivGlobal Definitions
    \ Model }1\mathrm{ (modI)
        > \equiv Definitions
        * Geometry 1
        > Materials
        \nabla Electromagnetic Waves, Frequency Domain (emw)
            D-DWave Equation, Electric 1
            D
            D Initial Values 1
            *)}\mathrm{ Impedance Boundary Condition 1
            ((I) Port 1
            -at Port 2
                \frac{\partialu}{\partialt}=f\mathrm{ Equation View}
            Mesh 1
    O0}\mathrm{ Study 1
    V Results
            | : :#: Data Sets
            N.Views
            e-12
            贯 Tables
            * Electric field
    **1D Plot Group 2
    **1D Plot Group 3
    **1D Plot Group 4
    - Export
            [皃Reports
```

Modeling Microwave Waveguide Components：The Tumed Stub

Imtroduction to Modeliing Microwave Waveguide Components: The Tumed Stulb

The Built Model, Electric Field Plot: $3.3 \mathbf{~ G H z}$

Modeling Microwave Waveguide Components: The Tumed Stub

Introduction to Modeling Microwave Waveguide Components:
The Tumed Stulb

The Building Model Geometry

Modeling Microwave Waveguide Compoments: The Tumed Stulb

Introductiom to Modelimg Microwave Waveguide Compoments:
The Tumed Stub

The Building Model Geometry

Tuned Stub
 Parameters and Coordinates

parameter	value	description
Wg_ht	43.18[mm]	Waveguide inside height
Wg_dp	$86.36[\mathrm{~mm}$]	Waveguide inside depth
Wg_wd	122.45 [mm]	Waveguide inside width
x 0 _ cnr	$0[\mathrm{~mm}]$	x corner of Waveguide
y0_cnr	$0[\mathrm{~mm}]$	y corner of Waveguide
$\mathrm{zO}_{-} \mathrm{cnr}$	$0[\mathrm{~mm}]$	z corner of Waveguide
Stbl_ht	$6.1224[\mathrm{~cm}]$	Tuning stub height
Stb1_dp	$86.36[\mathrm{~mm}]$	Tuning stub width
Stbl_wd	$1.5306[\mathrm{~cm}]$	Tuning stub length
xl _cnr	$22.959[\mathrm{~mm}$]	x corner of stub
yl_cnr	$0[\mathrm{~mm}]$	y corner of stub
z1_cnr	$43.18[\mathrm{~mm}]$	z comer of stub
Stb2_ht	$6.1224[\mathrm{~cm}]$	Tuning stub height
Stb2_dp	86.36[mm]	Tuning stub width
Stb2_wd	$1.5306[\mathrm{~cm}]$	Tuning stub length
x2_cnr	53.571 [mm]	x corner of stub
$\mathrm{y}_{2} \mathrm{cnr}$	$0[\mathrm{~mm}]$	y corner of stub

parameter	value	description
z2_cnr	$43.18[\mathrm{~mm}]$	z corner of stub
Stb3_ht	$6.1224[\mathrm{~cm}]$	Tuning stub height
Stb3_dp	$86.36[\mathrm{~mm}]$	Tuning stub width
Stb3_wd	$1.5306[\mathrm{~cm}]$	Tuning stub length
x 3 _cnr	$84.184[\mathrm{~mm}]$	x corner of stub
y 3 _cnr	$0[\mathrm{~mm}]$	y corner of stub
z3_cnr	$43.18[\mathrm{~mm}]$	z corner of stub
sigma_wall	$6.3 \mathrm{e} 7[\mathrm{~S} / \mathrm{m}]$	Wall cond.

Modeling Microwave Waveguide Compoments: The Thumed Stulb

Introductiom to Modelimg Microwave Waveguide Compoments: The Tumed Stub

The Building Model Geometry

	Vacuum		
Property	Name	Value	Unit
relative permittivity	epsilonr	1	1
relative permeability	mur	1	1
electrical conductivity	sigma	$1.0 \mathrm{e}-9$	$\mathrm{~S} / \mathrm{m}$

Tuned Stub
 Materials
 Parameters

	Wall		
Property	Name	Value	Unit
relative permittivity	epsilonr	1	1
relative permeability	mur	1	1
electrical conductivity	sigma	sigma_wall	S / m

Imtroduction to Modeling Microwave Waveguide Componemts: The Tumed Stulb

The Model Solution

 Tuned Stub Electric Field

Modeling Microwave Waveguide Compoments: The Tumed Stulb

Imtroduction to Modeling Microwave Waveguide Componemts:
The Tumed Stulb

The Model Solution
 Tuned Stub VSWR

$\operatorname{VSWR}=\frac{1+\left|S_{11}\right|}{1-\left|S_{11}\right|}$

Modeling Microwave Waveguide Compoments: The Tumed Stub

Introduction to Modeling Microwave Waveguide Components:
The Tumed Stulb

Thank Y(ou!

Modeling Microwave Waveguide Components: The Tumed Stub

