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Experimental System – CVB Experiment 

Photograph of Module ISS CVB Module 

•  Partially filled cell forms a Constrained Vapor Bubble (CVB) design.   

•  Wickless heat pipe with transparent walls. 

• Goal is to measure the vapor and liquid distributions as the pipe is driven. 
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Evaporation from a Thin Film 

 Transition region controls evaporation. Lowest overall resistance. 

 Accurate modeling will enable us to engineer optimal surfaces 

Heat Flux 
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Reflectivity/Interferometry Technique  

Adsorbed Film Meniscus 
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Varying thickness of the meniscus 

produces an interference pattern Interference pattern analyzed to obtain 

gray value at each pixel 

Analysis yields: 
 Film thickness profile 
 Contact angle 
 Interface curvature 
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Evaporating Meniscus – HFE-7000 
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Fluid Flow Model 

• Lubrication approximation used to model fluid flow. 

• Navier slip  (solid-liquid interface) and Marangoni 

shear (liquid-vapor interface) boundary conditions 

applied 

• Temperature dependence of fluid properties accounts for the capillary, Marangoni and van 

der Waals forces.  

• Mass balance,  provides the evaporating mass flux at each pixel location. 
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Heat Transfer at the Contact Line 

• Heat transfer at the contact line was modeled using a Kelvin-Clapeyron approach. 

• The temperature difference across the liquid was tied to the mass flux to describe 

the driving force as a superheat. 

• Final equation can be written as a 4th order differential equation for the film 

thickness. 
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Comsol Set-Up 

• Split the 4th order equation into two 

2nd order equations for film 

thickness and interface curvature. 

 

• 1-D weak form on the boundary. 

 

• 2-D conduction heat transfer in the 

solid. 

 

• Boundary conditions set film 

thickness and curvature at the thick 

end, and the curvature and slope at 

the start (perfectly wetting fluid). 
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Simulation Results – Steady-State 

• COMSOL simulation was able to 

reproduce the experimental data 

from an octane meniscus. 

 

• The incorporation of 

hydrodynamic slip was necessary 

to match both the position of the 

curvature peak and the spread of 

the peak. 

 

• Peak height is controlled by the 

thickness of the adsorbed film 

ahead of the contact line.   



COMSOL User's Conference, Boston 10 

Simulation Results – Oscillation 

• COMSOL simulation was applied to an 

pentane meniscus. 

 

• Oscillation was established by varying 

the temperature on the underside of the 

substrate. 

 

• Plots show snapshots of the temperature 

profile in the substrate for two different 

substrate materials at the same time 

during the oscillation. 

 

• Higher thermal diffusivity leads to a 

different dynamic mismatch between 

heat delivered to the film and heat 

removed via evaporation. 

SiO2 

Au 
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Simulation Results – Oscillation 

• Achieve large changes in film thickness 

for small differences in applied 

temperature (here ~ 0.01 ˚C) 

 

• Dimensionless heat flow rate changes 

dramatically with substrate material.  

The oscillation phase also changes 

and for certain forcings, the film 

oscillates at higher frequency. 
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Simulation Results – Oscillation 

• Film acting as a low-pass filter.  

 

• There is a small resonance that we need to explore further. 
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Conclusions 

 We can reproduce some of what we observe in an oscillating 
evaporating meniscus. 

 

 Oscillation amplitude and frequency are related to a mismatch 
between the heat dissipation rate in the film and the rate at 
which heat can be delivered from the substrate. 

 

 Much more modeling work is needed to match up with actual 
experimental data and to mimic all the behaviors we observe in 
the thin film. 


