

Simulation of the Arc Motion in Low-Voltage Surge Protection Devices

<u>M. Baeva</u>¹, M. Hanning², R.Methling¹, D. Uhrlandt¹, D. Gonzalez¹, A. Ehrhardt² ¹ Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany ² DEHN SE , Neumarkt, Germany

FROM IDEA TO PROTOTYPE

Introduction and motivation

- Spark gap based Surge Protection Devices (SPD) are used to reduce voltage surges preventing damages in electric industrial and housing grids
- Electric arc is generated after flashover
- Leaves a channel that can lead to a subsequent fault-current!
- The arc has to be extinguished, e.g., by elongation, cooling, splitting
- The arc development in SPD represents a multiphysics problem
 - electromagnetics
 - fluid flow
 - heat transfer
- In COMSOL Multiphysics we consider a 2D planar and 3D geometry to describe the problem
- Validation by means of optical emission spectroscopy (OES)

Setup for a magnetohydrodynamic model

Arc motion in air at atmospheric pressure

- Fluid flow
- Heat transfer
- Electromagnetics

Assumptions

- LTE plasma
- Laminar/Turbulent flow
- No transient electromagnetic effects

Material properties

 $\rho(p,T)$ - mass density $\sigma(p,T)$ - el. conductivity $C_p(p,T)$ - heat capacity $\kappa(p,T)$ - thermal conductivity $\eta(p,T)$ - viscosity $Q_r(p,T)$ - radiative losses

Mass continuity		Current continuity	
$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$		$ abla \cdot \boldsymbol{j} = 0$	
Momentum		Ohm's law	
$\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho(\boldsymbol{u} \cdot \nabla)\boldsymbol{u}$ $= \nabla \cdot [-p\boldsymbol{I} + \boldsymbol{K}] + \boldsymbol{F}$	$\langle \rangle \rangle$	+	$\boldsymbol{j} = \sigma \boldsymbol{E} + \boldsymbol{j}_e, \boldsymbol{E} = -\nabla V$
Energy 3D $\rho c_p \frac{\partial T}{\partial t} + \rho c_p \boldsymbol{u} \cdot \nabla \mathbf{T} + \nabla \cdot \boldsymbol{q} =$	∮≋ Q	N S	Maxwell equations $\nabla \times \frac{1}{\mu_0 \mu_r} \mathbf{B} = \mathbf{j}$
2D $d_z \rho c_p \frac{\partial T}{\partial t} + d_z \rho c_p \boldsymbol{u} \cdot \nabla \mathbf{T} + \nabla \cdot \boldsymbol{q} = d_z Q$			$\mathbf{B} = \nabla \times \mathbf{A}$

2D-planar and in 3D geometry

3D in a half geometry (symmetry plane)

- region of fluid (1) filled with air
- arc runners (2, 3) made of copper
- grounded (V=0)
- terminal for the electric current I(t)

2D-planar

- repeating in the perpendicular direction
- considers the whole dickness of the device d_z
- the 3rd dimension is taken into account but not spatially resolved
- the results correspond to those in the symmetry plane of the 3D geomety

Electric current and arc-voltage/ High-speed imaging

Time windows chosen for OES observations:

- a during ignition (2-3 μ s);
- b around maximum current (13-14 μs);
- c decay to 50% of maximum current (25.5-26.5 μ s);
- d decay to 25% of maximum current (29.5-30.5 μ s).

Arc appearance, current and voltage

Arc evolution from the 2D planar model

- Ignition in a conductive channel.
- Channel is switched off after T reaches 10⁴ K (~3µs).
- Motion of the arc results from a 3D effect (the Lorenz force).

3D model

- Spatial distribution of the plasma temperature in several cut planes to the instant 19.75µs.
- Similar distribution for planes close to the plane of symmetry.
- Differences to the plane of symmetry become stronger pronounced towards the chamber wall.
- The plane of symmetry is repeated in the 2D planar model.

1

2

- Similar development in both models
- Different extent of the ignition channels
- More constricted channel in 2D provides a faster temperature increase
- Same arc motion after ignition
- Finer resolution in 2D more details on the electrodes and towards the gas outflow

FROM IDEA TO PROTOTYPE

Modelling results

Spatial distribution of the plasma temperature along line of sight in the symmetry plane (3D) and in 2D

dashed – 2D planar model solid – 3D model

- The results correlate with those from OES.
- Strongest emission within a distance of ca. 2 mm – the narrow ingnition channel in 2D agrees better with OES data.
- Similar max temperatues and a shift of the maximum due to the arc motion.

11

7. Summary

- Simulations of the arc motion in an interrupter with diverging metal runners by MHD models in 3D and 2D planar geometries.
- The 2D planar modelling approach can predict the arc properties and the arc motion in a good agreement with the results obtained in and close to the plane of symmetry in 3D modelling approach.
- Results from OES are presented to demonstrate the adequateness of the 2D planar modelling approach.
- 2D planar modelling can be used for preliminary developments to avoid long computational times.

