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Abstract: Advancement in the field of 
Nanorobotics has been facilitated by the current 
advances in Nano-bio-technology and 
nanofabrication techniques. Nanorobots can be 
used in the advancement of medical technology, 
healthcare and environment monitoring and 
swim in biological fluids flowing in narrow 
channels of a few hundred nanometers in the 
area of bio-medical engineering. The pronounced 
effects in nanometer scale such as increased 
apparent viscosity and low Reynolds number 
make the designing of propulsion mechanism a 
challenging task. Prominent modes of flagellar 
locomotion in micro-sized biological organisms 
are by generating planar waves or through helical 
rotation. The present work attempts to 
numerically simulate the shape form of the tail of 
a swimming nanorobot by solving the governing 
equation of its flagellar hydro-dynamics. It 
corroborates with the analytical studies aimed at 
the modeling of Nanorobot dynamics thorough 
planar wave propagation. 
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1. Introduction 
 

Advancement in the field of Nanorobotics 
has been facilitated by the current advances in 
Nano-bio-technology and nanofabrication 
techniques [1]. Development of nanorobots 
should facilitate medical technology, healthcare 
and environment monitoring. Bio-medical 
engineering research may develop nanorobtos 
that swim in biological fluids flowing in narrow 
channels of a few hundred nanometers for drug 
delivery or as probes. The pronounced effects in 
nanometer scale such as increased apparent 
viscosity and low Reynolds number make the 
designing of propulsion mechanism a 
challenging task [2]. Prominent modes of 
flagellar locomotion in micro-sized biological 
organisms are by generating planar waves or 
through helical rotation [3-6]. Efforts have been 
taken to mathematically model the same and 

implement it as the propulsion mechanisms for 
nanorobots. Out of the two popular modes, the 
present work attempts to numerically simulate 
the shape form of the tail of a swimming 
nanorobot executing planar wave propagation.  
 
2. Mathematical Modeling 
 

The governing equation of the swimming 
nanorobot is derived analyzing the flagellar 
hydro-dynamics. The robot system is divided 
into a head and a tail part where the propulsive 
force is generated by the tail. Assessing the tail 
configuration provides the boundary conditions.  

Two sets of forces govern the motion of a 
flagellum.  Namely elastic forces that tend to 
straighten the flagellum and viscous forces that 
oppose the motion of each element through the 
fluid medium. The two forces determine the 
form and rate of propagation of waves along 
flagella. Force balance is used to derive the 
resultant governing equation of motion; a fourth 
order partial differential equation (PDE) 
consisting of Young’s modulus (E), Area 
moment of inertia (I), viscosity of the medium 
(µ) and Reynolds number (Re) terms (refer (1)). 

EI(x)
∂4y
∂x4

= −
4πμ

2− log(Re)
∂y
∂t

   (1) 

For a spherical head attached to cylindrical tail 
the boundary conditions are as follows  
 
At x=0  

y = 0        (2) 
∂y
∂x

=Gsinωt      (3) 

where G is the amplitude of the planer wave  
 
At x=L  

∂2y
∂x2

= 0       (4) 

as bending moment vanishes at the end and 
∂3y
∂x3

= 0       (5) 

as shear force vanishes at end 



3. Use of COMSOL Multiphysics  
 

The governing equation (1) developed for the 
propulsion mechanism is analyzed as a 1D time 
dependent PDE in COMSOL Multiphysics 
mathematical interface. 

  
3.1. Geometry 

 
The length unit is set as nanometers. A 1 

dimensional domain was defined as an interval 
that is equal to the length of the tail expressed as 
multiple of the characteristic length [7]. This 
total length i.e. interval is specified as 54650 nm.  

 
3.2. PDE (g) 

 
The governing equation (1) is mapped to the 

general form of the PDE modeling by dividing it 
into two second-order PDE. 

EI(x)
∂2p
∂x2

= −
4πμ

2− log(Re)
∂y
∂t

   (6) 

∂2y
∂x2

= p

      
(7) 

The two dependent variables (p,y) are 
analyzed using a time dependent study. The 
boundary conditions are inserted as two Dirichlet 
boundary conditions (eqn. 2 and 4) and two Flux 
/ source terms (eqn. 3 and 5). The approach is 
illustrated in the following flow chart (Fig.1). 

 

 
Figure 1. Solving Algorithm 

3.3. Meshing 
 
The Meshing is kept to enhance general 

physics iterations carried over the interval 
selected in 1D. The maximum mesh element size 
is also kept in terms of the characteristic length 
such that the domain is discretized in 100 
elements.  

 
3.4. Solver settings 
 
The solver solves for the time dependent 

problem and gives the solution of transverse 
displacement at each point on the tail at defined 
intervals of time. The total cycle time is 
calculated with respect to the forcing function 
frequency i.e. 100 rad/s. This comes out to be 
0.06283s. The time steps for study are also set 
such that we get the results in the 8 equal time 
interval of the cycle time as taken in the 
literature [7]. Hence the step is set to 0.007854s. 
The same is set in the solver configuration for 
the study.  

 
3.5. Parameters 
 
The values of the parameters used are listed 

in the table below 
 

Table 1. List of Parameters used 
Parameters Expression/Value Description 

Re 0.0001 Reynolds’s 
Number 

µ 0.001 Ns/m2 Viscosity 
C −4πμ

2− log(Re)
 

Drag 
Coefficient 

ω 100 rad/s Forcing 
frequency 

G 4E-9 Slope 
amplitude 

A 1E-22 Nm2 E*I 
l0 −A

Cω

⎛

⎝
⎜

⎞

⎠
⎟
0.25

 
Characteristic 

length 

L 10*l0 Total length 
 

4. Results  
 

The PDE in (eqn.1) was solved for planar 
wave configuration of a constant diameter 
flagellum. The plots of the shape form obtained 
were in accordance with those published in 
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literature [7] and also corroborates to the 
damping distance of around 2.6 times the scale 
length in the waveform. The maximum 
amplitude of the envelope formed dampens by 
30% at this distance.  

 

 
Figure 2. Flagella Shape and Amplitude 

superimposed for various time steps 
  
Fig.2 represents the variation of wave along 

the flagellum for various time steps while Fig.3 
represents the principal mode of vibration for the 
planar wave.  

 
 

 
Figure 3. Steady state configuration 

 
5. Conclusions and Future Work 

 
As indicated in Fig.2, the value of damping 

distance and the wavelength of wave dovetail 
comply with those proposed in analytic solutions 
in literature [7]. This study can be further 
extended for the analysis of varying cross 
sectional flagella executing planar wave.  
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