3D Modeling of Impedance Spectroscopy for Protein Detection in Nanoneedle Biosensors

H. Esfandyarpour1,2, A. Maiyegun1, and R. W. Davis2
1Center for Integrated Systems, Department of Electrical Engineering, Stanford University, Stanford, CA, USA
2Stanford Genome Technology Center, Stanford, CA, USA

We present a preliminary investigation of a Nanoneedle biosensor as an ultra sensitive and localized impedance biosensor using COMSOL.

This preliminary study was performed to prove the feasibility of the impedance biosensor for detection of protein or nucleic acids. By monitoring the change in capacitance and impedance of this structure, we aim to characterize and classify biological species such as protein or nucleic acids as they are attached.

Our localized geometry and monitoring approach aims to overcome some of the current limitations of biosensors. Impedance biosensors have enormous potential for point of care diagnostics; situations where low cost, small instrument size and speed of analysis are crucial.