Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

The Blasius Boundary Layer

The incompressible boundary layer on a flat plate in the absence of a pressure gradient is usually referred to as the Blasius boundary layer. The steady, laminar boundary layer developing downstream of the leading edge eventually becomes unstable to Tollmien-Schlichting waves and finally transitions to a fully turbulent boundary layer. Due to its fundamental importance, this type of flow has ...

Electric Heating in a Busbar, Modeled with LiveLink for Inventor

This tutorial model of the Joule heating effect in a busbar demonstrates how to synchronize an assembly between Inventor and COMSOL, how to modify the geometry from COMSOL, and how to run a geometric parametric sweep.

Notch Approximation to Low Cycle Fatigue Analyis of Cylinder with a Hole

A load carrying component of a structure is subjected to multi-axial cyclic loading during which localized yielding of the material occurs. In this model you perform a low cycle fatigue analysis of the part based on the Smith-Watson-Topper (SWT) model. Due to localized yielding, you can use two methods to obtain the stress and strain distributions for the fatigue evaluation. The first method ...

TM Mode Microwave Plasma

This model shows how to simulate a TM mode microwave plasma by using the Doppler broadening parameter to smooth out the resonance zone, which occurs on the contour of critical electron density. A detailed explanation of the underlying physics of this model can be found in the blog entry "Application Note on Microwave Discharges".

Finite Well

This model defines transient flow to a well of finite radius in a confined aquifer. The results from this analysis are compared to the well known Theis solution for flow to a point well. What distinguishes this model from the Theis problem is the well geometry. Since the analytic solution describes the well as a point source which produces unphysical results inside the wellbore. The COMSOL ...

Leaky Well

In layered sedimentary sequences confining units often sandwich viable reservoirs. If the confining units create less than perfect seals, fluids from an overlying reservoir can leak into the pumped reservoir below it. Often the pumping from the lower reservoir does not change flow in the unpumped one above. In these cases the leakage through the imperfect confining unit can be modeled as a ...

Isoelectric Separation

This modeling example applies the Transport of Diluted Species interface to model a separation process. A stream containing six different ionic species is divided into pure component streams by means of migrative transport in an electric field. Free flow electrophoresis can be used to separate macromolecules such as proteins, based on their mobility perpendicular to the flow of the carrier fluid. ...

Eigenmodes of a Two-Speaker System in a Living Room

The placement of furniture in a living room affects the acoustic characteristics of a room. This model returns the eigenfrequencies around 90 Hz and the response at any point in the living room for frequencies up to 500 Hz. It includes absorbing and damping characteristics from some of the furniture.

Deformation of a Feeder Clamp

This example analyzes the deformation of a feeder clamp under stress. The clamp secures a feeder that carries high-frequency electromagnetic fields, and it’s important that it remains as straight as possible. Forces on the clamp include both those from the feeder as well as those on the sleeve arising from the clamping screw. In this analysis, the feeder clamp is attached to a wall using ...

Pinched Hemispherical Shell

This example studies the deformation of a hemispherical shell, where the loads cause significant geometric nonlinearity. The maximum deflections are more than two magnitudes larger than the thickness of the shell. The problem is a standard benchmark, used for testing shell formulations in a case which contains membrane and bending action, as well as large rigid body rotation.

Quick Search