Corrugated Circular Horn Antenna

Introduction

The excited TE mode from a circular waveguide passes through the corrugated inner surface of a circular horn antenna where a TM mode is also generated. When combined, these two modes give lower cross-polarization at the antenna aperture than the excited TE mode. This example is designed using a 2D axisymmetric model.

Figure 1: 3D visualization of the corrugated horn antenna from a $2 D$ axisymmetric model.

Model Definition

The shape of a horn antenna provides a gradual change in impedance from the feeding waveguide to free space, resulting in low standing wave ratio. The corrugations are used to mix different modes at a given frequency to reduce cross-polarization. In particular, the horn antenna can be used to illuminate a parabolic reflector as part of a satellite communication system. Reduced cross-polarization results in reduced interference between adjacent channels that have alternating vertical and horizontal polarization.

The antenna is fed with the $\mathrm{TE}_{m 1}$ mode of a circular waveguide, where $m= \pm 1$, azimuthal mode number. The mode TE_{1} is defined in the port settings while the azimuthal mode number m is configured in the physics interface settings. As the mode propagates through the antenna, it becomes mixed with the $\mathrm{TM}_{m 1}$ mode. The inner walls on the corrugated
surface act as the boundary for the TE mode and the outer walls act as the boundary for the TM mode. The first and second corrugations near the waveguide feed are used for impedance tuning.

The model is made using the 2D axisymmetric formulation of The Electromagnetic Waves, Frequency Domain Interface. The temporal and angular dependence are assumed to be $e^{j(\omega t-m \phi)}$, where m is the azimuthal mode number. The model is solved for $m=+$ 1 and $m=-1$. Since the field propagates predominantly in the $+z$ direction, positive and negative values of m correspond to right-handed and left-handed circular polarization, respectively. A linear superposition of the $m=+1$ and $m=-1$ solutions is taken to examine the cross-polarization, specifically to compare the linear polarization in the x direction and y direction at the exit of the horn.

Results and Discussion

The far field plot in Figure 2 illustrates the directive beam pattern of the horn antenna.

Figure 2: Far field plot of the magnitude of the electric field for the corrugated horn antenna.
In Figure 3, the electric field is plotted at the entrance and exit of the horn antenna for the linear superposition of the $m=+1$ and $m=-1$ solutions. The electric field at the waveguide
feed is predominantly in the x direction, although it is not linearly polarized. The field is nonzero at the waveguide boundary where it must be perpendicular to the PEC surface. At the horn antenna aperture, the field is nearly zero at the boundary and appears to be linearly polarized in the x direction.

Figure 3: Electric field at entrance and exit of corrugated horn antenna.
The amount of linear polarization in the x direction and y direction can be quantified by evaluating the integral of the absolute value of each field component, $\left|E_{x}\right|$ and $\left|E_{y}\right|$, over the entrance and exit of the horn antenna. The ratio at the waveguide feed is approximately $5: 1$ and the ratio at the antenna aperture is approximately $40: 1$. Thus, the crosspolarization is reduced by approximately a factor of 8 .

The far-field radiation pattern in Figure 2 is just a simple body of revolution of the 2D plot data that is useful to measure quickly the maximum gain and review the overall shape of the pattern. The effective 3 D far-field radiation pattern of the antenna excited by TE_{11} mode can be estimated using the predefined postprocessing function, normdB3DEfar_TE11 (angle), that is shown in Figure 4.

Figure 4: Effective 3D far-field radiation pattern plotted in dB scale using far-far field function normdB3DEfar_TE11(angle).

Notes About the COMSOL Implementation

The horn antenna is assumed to be a perfect electric conductor (PEC). Since the electric field is known a priori to be zero inside the PEC, it is removed from the modeling domain. The domain is truncated with a perfectly matched layer (PML) at the free space boundary. The PML region contains a mapped mesh.

```
Application Library path: RF_Module/Antennas/ corrugated_circular_horn_antenna
```


Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click $\underset{\text { mph }}{\Delta}$ Model Wizard.
MODEL WIZARD
I In the Model Wizard window, click 2D Axisymmetric.
2 In the Select Physics tree, select Radio Frequency>Electromagnetic Waves, Frequency Domain (emw).

3 Click Add.
4 Click \rightarrow Study.
5 In the Select Study tree, select General Studies>Frequency Domain.
6 Click $\sqrt{ }$ Done.

GLOBAL DEFINITIONS

Parameters I

I In the Model Builder window, under Global Definitions click Parameters I.
2 In the Settings window for Parameters, locate the Parameters section.
3 Click Load from File.
4 Browse to the model's Application Libraries folder and double-click the file corrugated_circular_horn_antenna_parameters.txt.

First load the geometric parameters. Then calculate the cutoff frequency fc to ensure that a higher value is chosen for the simulation frequency $f 0$.
5 In the table, enter the following settings:

Name	Expression	Value	Description
m_angular	1	I	Azimuthal mode number
fc	$1.841^{*} c_{c}$ const/2/pi/r1	4.8E8 I/s	Cutoff frequency
f0	$1.2^{*} \mathrm{fc}$	$5.76 \mathrm{E} 8 \mathrm{I} / \mathrm{s}$	Frequency

Here, c_const is a predefined COMSOL constant for the speed of light in vacuum.

STUDY I

Step 1: Frequency Domain

I In the Model Builder window, under Study I click Step I: Frequency Domain.
2 In the Settings window for Frequency Domain, locate the Study Settings section.
3 In the Frequencies text field, type fo.

GEOMETRY I

Create a semicircle for the domain that includes a layer for the PML.

Circle I (cl)

I In the Geometry toolbar, click © Circle.
2 In the Settings window for Circle, locate the Size and Shape section.
3 In the Radius text field, type hl*1.8.
4 In the Sector angle text field, type 180.
5 Locate the Position section. In the \mathbf{z} text field, type 3.
6 Locate the Rotation Angle section. In the Rotation text field, type 270.
7 Click to expand the Layers section. In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	c_const/f0

Draw a short section of waveguide, followed by the outline of the horn.
Rectangle I (rl)
I In the Geometry toolbar, click \square Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type r1.
4 In the Height text field, type wl.
5 Locate the Position section. In the \mathbf{z} text field, type $-w l$.
6 Click Build Selected.
Polygon I (poll)
I In the Geometry toolbar, click $/$ Polygon.
2 In the Settings window for Polygon, locate the Coordinates section.
3 In the table, enter the following settings:

$\mathbf{r}(\mathbf{m})$	$\mathbf{z (m)}$
0	$h l^{*} \cos ($ angle $)$
$r 1+h l * \sin ($ angle $)$	$h l * \cos ($ angle $)$

Polygon 2 (pol2)
I In the Geometry toolbar, click $/$ I Polygon.
2 In the Settings window for Polygon, locate the Coordinates section.

3 In the table, enter the following settings:

$\mathbf{r}(\mathbf{m})$	$\mathbf{z}(\mathbf{m})$
$r 1$	0
$r 1+h l^{*} \sin ($ angle $)$	$h l^{*} \cos$ (angle)
$r 1+h l^{*} \sin ($ angle) $+h t$	$h l^{*} \cos$ (angle)
$r 1+h t$	0

Draw an array of rectangles that will form the corrugations.
Rectangle 2 (r2)
I In the Geometry toolbar, click \square Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type grid_x.
4 In the Height text field, type grid_y.
5 Locate the Position section. From the Base list, choose Center.
6 In the \mathbf{r} text field, type 0.39 .
7 In the \mathbf{z} text field, type 0.53 .

Array I (arrl)

I In the Geometry toolbar, click ${ }_{\kappa}^{\kappa} P_{x}^{\pi}$ Transforms and choose Array.
2 Select the object $\mathbf{r 2}$ only.
3 In the Settings window for Array, locate the Size section.
4 From the Array type list, choose Linear.
5 In the Size text field, type floor(hl/grid_y/2*0.85).
6 Locate the Displacement section. In the \mathbf{r} text field, type grid_y*2*tan(angle).
7 In the \mathbf{z} text field, type grid_y*2.
8 Click Build Selected.
Make separate corrugations near the waveguide feed that are used for tuning.
Rectangle 3 (r3)
I In the Geometry toolbar, click \square Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type grid_x.
4 In the Height text field, type grid_y.
5 Locate the Position section. From the Base list, choose Center.

6 In the \mathbf{r} text field, type 0.36 .
7 In the \mathbf{z} text field, type 0.53 .
Copy I (copyl)
I In the Geometry toolbar, click ${ }_{k}^{\kappa} P_{y}^{\pi}$ Transforms and choose Copy.
2 Select the object $\mathbf{r} 3$ only.
3 In the Settings window for Copy, locate the Displacement section.
4 In the \mathbf{z} text field, type -grid_y, -grid_y*3.
5 Locate the Input section. Clear the Keep input objects check box.
Add a section of the antenna body outside the short section of waveguide. Then union that section with angled antenna body part and all of the corrugations that were made with the array. This excludes the two separate corrugations near the waveguide feed.

Rectangle 4 (r4)
I In the Geometry toolbar, click \square Rectangle.
2 In the Settings window for Rectangle, locate the Size and Shape section.
3 In the Width text field, type 0.3.
4 In the Height text field, type wl.
5 Locate the Position section. In the \mathbf{r} text field, type $r 1$.
6 In the \mathbf{z} text field, type -wl .
7 Click Build Selected.
Union I (unil)
I In the Geometry toolbar, click \square Booleans and Partitions and choose Union.
2 Click the $\xlongequal[+]{t}$ Zoom Extents button in the Graphics toolbar.

3 Select the objects $\operatorname{arrl}(1), \operatorname{arrl}(10), \operatorname{arrI}(11), \operatorname{arrl}(12), \operatorname{arrl}(13), \operatorname{arrl}(14), \operatorname{arrl}(15)$,
 only.

4 In the Settings window for Union, locate the Union section.
5 Clear the Keep interior boundaries check box.

6 Click Build Selected.

Subtract the two corrugations near the waveguide feed from the antenna body formed in the preceding step.

Difference I (difl)
I In the Geometry toolbar, click \square Booleans and Partitions and choose Difference.
2 Select the object unil only.
3 In the Settings window for Difference, locate the Difference section.
4 Find the Objects to subtract subsection. Select the \square Activate Selection toggle button.
5 Select the objects copyI(I) and copyI(2) only.
6 Clear the Keep interior boundaries check box.

7 Click Build All Objects.

The geometry should look the same as the outline seen in the above figure.

DEFINITIONS

Perfectly Matched Layer I (pmll)
I In the Definitions toolbar, click Whar Perfectly Matched Layer.
2 Select Domains 1 and 5 only.
3 In the Settings window for Perfectly Matched Layer, locate the Geometry section.
4 In the Center coordinate text field, type 3.

ELECTROMAGNETIC WAVES, FREQUENCY DOMAIN (EMW)

I In the Model Builder window, under Component I (compI) click Electromagnetic Waves, Frequency Domain (emw).

2 Select Domains 1-5 only.
Alternatively, Select all domains and remove Domain 6.
3 In the Settings window for Electromagnetic Waves, Frequency Domain, locate the Out-ofPlane Wave Number section.

4 In the m text field, type m_angular.

Port I

I In the Physics toolbar, click \square Boundaries and choose Port.

Assign a Port boundary condition to the bottom edge of the short waveguide section.
2 Select Boundary 4 only.

3 In the Settings window for Port, locate the Port Properties section.
4 From the Type of port list, choose Circular.
For the first port, wave excitation is on by default.

5 Select the Activate slit condition on interior port check box.

6 Click Toggle Power Flow Direction.

Setting the Port orientation to Reverse makes the propagation direction opposite to the arrow shown in the graphics window. Note that by default the mode is TEm1, where m is the azimuthal mode number in Electromagnetic Wave, Frequency Domain.

Far-Field Domain I
In the Physics toolbar, click Domains and choose Far-Field Domain.

MATERIALS

Add a new material for the vacuum.

Material I (matl)

I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.
3 In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Relative permittivity	epsilonr_iso ; epsilonrii = epsilonr_iso, epsilonrij $=0$	1	I	Basic
Relative permeability	```mur_iso;murii = mur_iso, murij = 0```	1	I	Basic
Electrical conductivity	sigma_iso ; sigmaii = sigma_iso, sigmaij $=0$	0	S/m	Basic

The PML will contain a Mapped mesh with 10 layers. The other domains will contain a Free Triangular mesh with a maximum size of 0.2 Wavelengths to ensure 10 degrees of freedom for the free space wavelength.

MESH I
In the Model Builder window, under Component I (compI) right-click Mesh I and choose Build All.

STUDY I

Step I: Frequency Domain

I In the Model Builder window, under Study I click Step I: Frequency Domain.
2 In the Settings window for Frequency Domain, click to expand the Study Extensions section.

3 Select the Auxiliary sweep check box.
4 Click + Add.
5 In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
m_angular (Azimuthal mode number)	-11	

6 In the Home toolbar, click $=$ Compute.

RESULTS

Surface

The electric field intensity is highest inside the waveguide. Plot the electric field intensity in dB for a better view of the field intensity outside the antenna.

I In the Model Builder window, expand the Results>Electric Field (emw) node, then click Surface.

2 In the Settings window for Surface, locate the Expression section.
3 In the Expression text field, type 20*log10(emw. normE).
4 In the Electric Field (emw) toolbar, click © Plot.

Smith Plot (emw)
In the Model Builder window, expand the Smith Plot (emw) node.

Color Expression I

I In the Model Builder window, expand the Results>Smith Plot (emw) $>$ Reflection Graph I node, then click Color Expression I.

2 In the Settings window for Color Expression, locate the Expression section.
3 In the Expression text field, type m_angular.

Reflection Graph I

I In the Model Builder window, click Reflection Graph I.
2 In the Settings window for Reflection Graph, click to expand the Title section.
3 In the Title text area, type Reflection Graph: S-parameter, Azimuthal mode number.

Radiation Pattern I

Increase the resolution of the far field polar plot.
I In the Model Builder window, expand the Results>2D Far Field (emw) node, then click Radiation Pattern I.

2 In the Settings window for Radiation Pattern, locate the Evaluation section.
3 Find the Reference direction subsection. In the \mathbf{x} text field, type -1.
4 In the \mathbf{z} text field, type 0.
5 In the 2D Far Field (emw) toolbar, click \varnothing Plot.

3D Far Field (emw)
3D far-field radiation pattern is generated by default. See Figure 2.

Create a dataset for 3D plots of field quantities at the aperture of the antenna. This is done in two steps: first select the boundary in the axisymmetric geometry, then revolve that around the axis.

Study I/Solution I (2) (sol I)
In the Results toolbar, click More Datasets and choose Solution.

Selection

I In the Results toolbar, click Attributes and choose Selection.
2 In the Settings window for Selection, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundary 9 only.

Revolution 2D Aperture

I In the Results toolbar, click More Datasets and choose Revolution 2D.
2 In the Settings window for Revolution 2D, type Revolution 2D Aperture in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study I/Solution I (2) (soll).
4 Click to expand the Advanced section. Select the Define variables check box.
Create a dataset for 3D plots of field quantities at the waveguide feed, similar to the preceding steps for the aperture.

Study I/Solution I (3) (sol I)
In the Results toolbar, click More Datasets and choose Solution.

Selection

I In the Results toolbar, click Attributes and choose Selection.
2 In the Settings window for Selection, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Boundary.
4 Select Boundary 4 only.
Revolution 2D Feed
I In the Results toolbar, click More Datasets and choose Revolution 2D.
2 In the Settings window for Revolution 2D, type Revolution 2D Feed in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study I/Solution I (3) (soll).
4 Locate the Advanced section. Select the Define variables check box.

Study I/Solution I (4) (sol I)
In the Results toolbar, click
More Datasets and choose Solution.

Selection

I In the Results toolbar, click Attributes and choose Selection.
2 In the Settings window for Selection, locate the Geometric Entity Selection section.
3 From the Geometric entity level list, choose Domain.
4 Select Domain 6 only.
Revolution 2D Horn
I In the Results toolbar, click More Datasets and choose Revolution 2D.
2 In the Settings window for Revolution 2D, type Revolution 2D Horn in the Label text field.

3 Locate the Data section. From the Dataset list, choose Study I/Solution I (4) (soll).
4 Click to expand the Revolution Layers section. In the Start angle text field, type - 45 .
5 In the Revolution angle text field, type 250.
3D Plot Group 6
I In the Results toolbar, click \square 3D Plot Group.
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Dataset list, choose None.
Plot the cut-away section of the antenna.
4 Click to expand the Title section. From the Title type list, choose None.

Surface I

I Right-click 3D Plot Group 6 and choose Surface.
2 In the Settings window for Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D Horn.
4 Locate the Expression section. In the Expression text field, type 1.
5 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
6 From the Color list, choose Gray.
7 In the 3D Plot Group 6 toolbar, click © Plot.
8 Click the $\underset{4}{ }$ Zoom Extents button in the Graphics toolbar.
3D Plot Group 6
Plot the electric field at the waveguide feed.

Arrow Surface I

I In the Model Builder window, right-click 3D Plot Group 6 and choose Arrow Surface. The field that is plotted is a linear superposition of the $m=1$ and $m=-1$ solutions.

2 In the Settings window for Arrow Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D Feed.
4 Locate the Expression section. From the Coordinate system list, choose Cylindrical.
5 In the R component text field, type sum(with ($N+1, E r * \exp (-j *(2 * N-1) * r e v 3 p h i))$, $N, 0,1)$.

6 In the PHI component text field, type sum(with (N+1, Ephi*exp(-j*(2*N-1)* rev3phi)), $N, 0,1$).

7 In the \mathbf{Z} component text field, type sum(with ($N+1, E z * \exp (-j *(2 * N-1) * r e v 3 p h i))$, $\mathrm{N}, 0,1$).
8 Locate the Coloring and Style section. Select the Scale factor check box.
9 In the associated text field, type 0.02 .
10 Locate the Arrow Positioning section. In the Number of arrows text field, type 80.

Deformation I

I Right-click Arrow Surface I and choose Deformation.
2 In the Settings window for Deformation, locate the Expression section.
3 In the \mathbf{R} component text field, type $3^{*} r$.
4 In the PHI component text field, type 0.
5 In the \mathbf{Z} component text field, type -1.
6 Locate the Scale section. Select the Scale factor check box.
7 In the associated text field, type 1.
8 In the 3D Plot Group 6 toolbar, click © Plot.

Arrow Surface 2

I In the Model Builder window, right-click 3D Plot Group 6 and choose Arrow Surface.
2 In the Settings window for Arrow Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D Aperture.
4 Locate the Expression section. From the Coordinate system list, choose Cylindrical.
5 In the \mathbf{R} component text field, type sum(with ($N+1, \operatorname{Er*} \exp (-j *(2 * N-1) * r e v 2 p h i))$, $\mathrm{N}, 0,1$) .

6 In the PHI component text field, type sum(with (N+1, Ephi*exp(-j* (2*N-1)* rev2phi)) , $, 0,1$).

7 In the \mathbf{Z} component text field, type sum(with ($N+1, E z * \exp (-j *(2 * N-1) * r e v 2 p h i))$, $\mathrm{N}, 0,1)$.

8 Locate the Coloring and Style section. From the Arrow type list, choose Cone.
9 Select the Scale factor check box.
10 In the associated text field, type 0.015.

Color Expression I

I Right-click Arrow Surface 2 and choose Color Expression.
2 In the Settings window for Color Expression, locate the Coloring and Style section.
3 Clear the Color legend check box.

Deformation I

I In the Model Builder window, right-click Arrow Surface 2 and choose Deformation.
2 In the Settings window for Deformation, locate the Expression section.
3 In the \mathbf{R} component text field, type 0.
4 In the PHI component text field, type 0.
5 In the \mathbf{Z} component text field, type 1.
6 Locate the Scale section. Select the Scale factor check box.
7 In the associated text field, type 1.
8 In the 3D Plot Group 6 toolbar, click \triangle Plot.

Surface 2

I In the Model Builder window, right-click 3D Plot Group 6 and choose Surface.
2 In the Settings window for Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D Feed.
4 Locate the Expression section. In the Expression text field, type sqrt (abs (sum (with ($N+$ 1, (Er*cos(rev3phi) -Ephi*sin(rev3phi))*exp(-j*(2*N-1)*rev3phi)), N, 0, 1)) ^2+abs (sum(with (N+1, (Er*sin(rev3phi) +Ephi*cos(rev3phi))*exp(-j* $(2 * N-1) * r e v 3 p h i)), N, 0,1))^{\wedge} 2+a b s(s u m(w i t h(N+1, E z * \exp (-j *(2 * N-1)$ * rev3phi)), $\mathrm{N}, 0,1))^{\wedge} 2$).

5 Locate the Coloring and Style section. Clear the Color legend check box.
6 In the 3D Plot Group 6 toolbar, click © Plot.

Surface 3

I Right-click 3D Plot Group 6 and choose Surface.
2 In the Settings window for Surface, locate the Data section.
3 From the Dataset list, choose Revolution 2D Aperture.
4 Locate the Expression section. In the Expression text field, type sqrt (abs (sum (with ($\mathrm{N}+$ 1, (Er*cos(rev2phi) -Ephi*sin(rev2phi))*exp(-j*(2*N-1)*rev2phi)), N, 0, 1)) ^2+abs (sum(with (N+1, (Er*sin(rev2phi) +Ephi*cos(rev2phi))*exp(-j* $(2 * N-1) * r e v 2 p h i)), N, 0,1))^{\wedge} 2+a b s(s u m(w i t h(N+1, E z * \exp (-j *(2 * N-1)$ * rev2phi)) , $\mathrm{N}, 0,1))^{\wedge} 2$).

5 Locate the Coloring and Style section. Clear the Color legend check box.
6 From the Color table list, choose Thermal.
7 In the 3D Plot Group 6 toolbar, click \bigcirc Plot.

The resulting plot should look like Figure 3.
Check S_{11}.
Estimate the amount of linear polarization in the x direction at the waveguide feed by integrating the magnitude of E_{x} over the surface.

Feed x component

I In the Model Builder window, expand the Results>Derived Values node.
2 Right-click Derived Values and choose Integration>Surface Integration.
3 In the Settings window for Surface Integration, type Feed x component in the Label text field.

4 Locate the Data section. From the Dataset list, choose Revolution 2D Feed.
5 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
abs (sum(with $\left(N+1,\left(E r^{*} \cos (r e v 3 p h i)-E p h i^{*}\right.\right.$	$V * m$	
$\left.\left.\left.\sin (r e v 3 p h i))^{*} \exp \left(-j^{*}(2 * N-1) * r e v 3 p h i\right)\right), N, 0,1\right)\right)$		

6 Locate the Integration Settings section. Clear the Compute volume integral check box.
7 Click $=$ Evaluate.
Similarly, estimate the amount of linear polarization in the y direction at the waveguide feed by integrating the magnitude of E_{y} over the surface.

Feed y component

I In the Results toolbar, click ${ }_{e-12}^{8.85}$ More Derived Values and choose Integration> Surface Integration.
2 In the Settings window for Surface Integration, type Feed y component in the Label text field.

3 Locate the Data section. From the Dataset list, choose Revolution 2D Feed.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
abs $\left(\operatorname{sum}\left(\right.\right.$ with $\left(N+1,\left(E r^{*} \sin (r e v 3 p h i)+E p h i^{*}\right.\right.$	$V * m$	
$\left.\left.\left.\cos (r e v 3 p h i))^{*} \exp \left(-j^{*}(2 * N-1) * r e v 3 p h i\right)\right), N, 0,1\right)\right)$		

5 Locate the Integration Settings section. Clear the Compute volume integral check box.
6 Click $=$ Evaluate.
Estimate the amount of linear polarization in the x direction at the antenna aperture by integrating the magnitude of E_{x} over the surface.

Aperture x component

> I In the Results toolbar, click ${ }_{e-12}^{8.85}$ More Derived Values and choose Integration> Surface Integration.

2 In the Settings window for Surface Integration, type Aperture x component in the Label text field.

3 Locate the Data section. From the Dataset list, choose Revolution 2D Aperture.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
abs (sum(with $\left(N+1,\left(E r^{*} \cos (r e v 2 p h i)-E p h i *\right.\right.$	$V * m$	
$\left.\left.\left.\sin (r e v 2 p h i))^{*} \exp \left(-j^{*}(2 * N-1) * r e v 2 p h i\right)\right), N, 0,1\right)\right)$		

5 Locate the Integration Settings section. Clear the Compute volume integral check box.
6 Click $=$ Evaluate.
Similarly, estimate the amount of linear polarization in the y direction at the antenna aperture by integrating the magnitude of E_{y} over the surface.

Aperture y component
I In the Results toolbar, click ${ }_{e-12}^{8.85}$ More Derived Values and choose Integration> Surface Integration.

2 In the Settings window for Surface Integration, type Aperture y component in the Label text field.

3 Locate the Data section. From the Dataset list, choose Revolution 2D Aperture.
4 Locate the Expressions section. In the table, enter the following settings:

Expression	Unit	Description
abs $\left(\operatorname{sum}\left(w i t h\left(N+1,\left(E r^{*} \sin (r e v 2 p h i)+E p h i *\right.\right.\right.\right.$ $\cos (r e v 2 p h i)) * \exp (-j *(2 * N-1) * r e v 2 p h i)), N, 0,1))$	$V * m$	

5 Locate the Integration Settings section. Clear the Compute volume integral check box.

6 Click $=$ Evaluate.

The 3D far-field radiation pattern plotted by default is just a simple body of revolution of the 2 D plot that is useful to measure quickly the maximum gain. Using the predefined postprocessing function, it is possible to estimate an effective 3 D far-field radiation pattern of the antenna that is excited by the dominant mode of the 3 D model of a circular waveguide, TE_{11} mode.

3D Plot Group 7

I In the Results toolbar, click \square 3D Plot Group.
2 In the Settings window for 3D Plot Group, locate the Data section.
3 From the Dataset list, choose None.

4 Locate the Color Legend section. Select the Show maximum and minimum values check box.

Radiation Pattern I

I In the 3D Plot Group 7 toolbar, click \square More Plots and choose Radiation Pattern.
2 In the Settings window for Radiation Pattern, locate the Data section.
3 From the Dataset list, choose Study I/Solution I (I) (solI).
4 Locate the Expression section. In the Expression text field, type emw.normdB3DEfar_TE11(angle).

5 Select the Threshold check box.
6 In the associated text field, type -20.
7 Locate the Evaluation section. Find the Angles subsection. In the Number of elevation angles text field, type 90.

8 In the Number of azimuth angles text field, type 90.
9 In the Azimuthal angle variable text field, type angle.
The far-field function contains an argument, which is given the name angle by default. For the azimuthal angle variable field in the Evaluation section, enter angle to match the function argument. Note that the name can be chosen freely as long as the function argument matches the azimuth angle variable specified in the Evaluation section.

10 Locate the Coloring and Style section. From the Color table list, choose Wave.

II In the 3D Plot Group 7 toolbar, click \triangle Plot.
freq $=0.576 \mathrm{GHz}, \mathrm{m}_{-}$angular $=1 \quad$ Radiation Pattern: Far-field norm, dB

Compare the plot with Figure 4.

