Alexandra Foley | December 19, 2013

A while back, I had the opportunity to speak with Steven Conrad, a critical care physician at the Louisiana State University (LSU) Health Science Center in New Orleans. Not only is Dr. Conrad a physician as well as a professor at LSU, he’s also a biomedical engineer who uses finite element analysis (FEA) to conduct research on the design of dialyzers. Dr. Conrad uses COMSOL Multiphysics to gain a deeper understanding of the physics behind these devices, and to create […]

Read more ⇢

Article Categories

David Kan | December 18, 2013

A prospective user of COMSOL approached me about modeling viscous fingering, which is an effect seen in porous media flow. He hadn’t found a satisfying solution elsewhere, so he turned to COMSOL. I’d like to share with you some of my insight on how to go from idea to model to simulation by taking a “do-it-yourself approach” and utilizing the equation-based modeling capabilities of COMSOL Multiphysics.

Read more ⇢

Article Categories

Alexandra Foley | October 1, 2013

Laminar static mixers are used for the accurate mixing of fluids (both liquid and gas). Unlike a mixer containing moving blades, a static mixer contains twisted stationary blades that are positioned at different angles throughout the cylindrical flow channel of the mixer. When a fluid is pumped through the channel, the alternating directions of the cross-sectional blades cause the fluid to become mixed as it passes along the length of the channel. This mixing technique allows for precise control over […]

Read more ⇢
Walter Frei | September 16, 2013

COMSOL Multiphysics offers several different formulations for solving turbulent flow problems: the Spalart-Allmaras, k-epsilon, k-omega, Low Reynolds number k-epsilon, and SST models. All of these formulations are available in the CFD Module, and the k-epsilon and Low Reynolds number k-epsilon are available in the Heat Transfer Module. This posting outlines the reasons why we want to use these various turbulence models, how to choose between them, and how to use them effectively. Throughout the post, you’ll find links to relevant […]

Read more ⇢

Article Categories

Laura Bowen | August 29, 2013

When it comes to recreational water sports, simulation can make a dramatic difference in performance. Skimboards are a perfect example of this. These short, thin boards are similar to surfboards without fins and they allow riders to float on the water’s surface and glide. In order to improve the design of the board, one group of researchers relied on hydrodynamics to understand the interaction between water and skimboards.

Read more ⇢

Article Categories

Alexandra Foley | August 21, 2013

Solar photovoltaic (PV) cells are semiconductor devices that directly convert solar energy into electricity or voltage using the photovoltaic effect. These PV cells are more commonly known as solar cells, or solar panels, and in 2012 they produced roughly 93 terawatt-hours (TWh) of electricity — enough energy to power over 20 million homes. Because the cells must be directly exposed to the sun’s rays, they are housed outdoors where the panels are affected by the elements. Therefore, the cells must […]

Read more ⇢

Article Categories

Valerio Marra | July 2, 2013

Of all boats, I find sailboats to be the most fascinating, especially when sails are their only means of propulsion. Kinetic energy is transferred from the wind to the sails, which results in a lift force that balances drag forces and allows the sailboat to move through the water. We are all familiar with the parts of a boat above the waterline: deck, spars, sails, and the rudder used to turn the boat (figure 1c). Not everyone pays attention to […]

Read more ⇢

Article Categories

Alexandra Foley | June 17, 2013

The fact that oil and water don’t mix is something that you are probably all familiar with. At one point or another, you’ve most likely noticed what happens when you shake a bottle of say, Italian salad dressing, and the liquids mix momentarily, only to become separated again within seconds as oil bubbles rise to the surface. Creating a simulation describing how these two immiscible fluids interact is a great way to introduce computational fluid dynamics (CFD) applied to two-phase […]

Read more ⇢

Article Categories

Jennifer Segui | April 11, 2013

If you enjoy ketchup with your food, there’s a good chance you’ve experienced what we’ll call here the all-or-nothing ketchup quandary. You know, that moment when you reach for a new glass bottle of ketchup, remove the cap, and turn the bottle practically upside down — and then nothing happens. Intuitively you shake or tap the bottle, and then suddenly your food is completely coated in ketchup (unless your reflexes are really good, of course). In this blog post we […]

Read more ⇢

Article Categories

Alexandra Foley | March 8, 2013

Water purification is the process by which chemicals, contaminants, and sediments are removed from dirty water to make it clean, and there are many processes through which this can be done. What you might not know, is that ozone molecules can be used as a means of disinfection in the purification process. “Ozonation” has been used to purify water, kill germs and bacteria in food, and even get rid of bad smells. Not only does ozonation provide clean water without […]

Read more ⇢

Article Categories

Fanny Littmarck | January 7, 2013

If I asked you to envision a wind turbine, odds are you’d picture a wind farm in some remote location. With good reason; that’s commonly where they are found. If you’re a student or faculty of Case Western Reserve University, on the other hand, you might think of the wind turbine you have on campus. Does it make sense to set up wind turbines in urban settings? These two researchers suggest that it does.

Read more ⇢

Article Categories